

OSMnx 2.0.0-dev

OSMnx is a Python package to easily download, model, analyze, and visualize street networks and other geospatial features from OpenStreetMap. You can download and model walking, driving, or biking networks with a single line of code then analyze and visualize them. You can just as easily work with urban amenities/points of interest, building footprints, transit stops, elevation data, street orientations, speed/travel time, and routing.

OSMnx 2.0 is in beta: read the migration guide [https://github.com/gboeing/osmnx/issues/1123].

Citation

If you use OSMnx in your work, please cite the paper:

Boeing, G. (2024). Modeling and Analyzing Urban Networks and Amenities with OSMnx [https://geoffboeing.com/publications/osmnx-paper/]. Working paper. https://geoffboeing.com/publications/osmnx-paper/

Getting Started

First read the Getting Started guide for an introduction to the package and FAQ.

Then work through the OSMnx Examples Gallery [https://github.com/gboeing/osmnx-examples] for step-by-step tutorials and sample code.

Installation

Follow the Installation guide to install OSMnx.

Support

If you have any trouble, consult the User Reference. The OSMnx repository is hosted on GitHub [https://github.com/gboeing/osmnx]. If you have a “how-to” or usage question, please ask it on StackOverflow [https://stackoverflow.com/search?q=osmnx], as we reserve the repository’s issue tracker for bug tracking and feature development.

License

OSMnx is open source and licensed under the MIT license. OpenStreetMap’s open data license [https://www.openstreetmap.org/copyright] requires that derivative works provide proper attribution. Refer to the Getting Started guide for usage limitations.

Documentation

	Getting Started

	Installation

	User Reference

	Internals Reference

	Further Reading

Indices

	Index

	Module Index

	Search Page

Getting Started

Get Started in 4 Steps

	Install OSMnx by following the Installation guide.

	Read “Introducing OSMnx” below on this page.

	Work through the OSMnx Examples Gallery [https://github.com/gboeing/osmnx-examples] for step-by-step tutorials and sample code.

	Consult the User Reference for complete details on using the package.

Finally, if you’re not already familiar with NetworkX [https://networkx.org] and GeoPandas [https://geopandas.org], make sure you read their user guides as OSMnx uses their data structures and functionality.

Introducing OSMnx

This quick introduction explains key concepts and the basic functionality of OSMnx.

Overview

OSMnx is pronounced as the initialism: “oh-ess-em-en-ex”. It is built on top of NetworkX and GeoPandas, and interacts with OpenStreetMap [https://www.openstreetmap.org] APIs to:

	Download and model street networks or other infrastructure anywhere in the world with a single line of code

	Download geospatial features (e.g., political boundaries, building footprints, grocery stores, transit stops) as a GeoDataFrame

	Query by city name, polygon, bounding box, or point/address + distance

	Model driving, walking, biking, and other travel modes

	Attach node elevations from a local raster file or web service and calculate edge grades

	Impute missing speeds and calculate graph edge travel times

	Simplify and correct the network’s topology to clean-up nodes and consolidate complex intersections

	Fast map-matching of points, routes, or trajectories to nearest graph edges or nodes

	Save/load network to/from disk as GraphML, GeoPackage, or OSM XML file

	Conduct topological and spatial analyses to automatically calculate dozens of indicators

	Calculate and visualize street bearings and orientations

	Calculate and visualize shortest-path routes that minimize distance, travel time, elevation, etc

	Explore street networks and geospatial features as a static map or interactive web map

	Visualize travel distance and travel time with isoline and isochrone maps

	Plot figure-ground diagrams of street networks and building footprints

The OSMnx Examples Gallery [https://github.com/gboeing/osmnx-examples] contains tutorials and demonstrations of all these features, and package usage is detailed in the User Reference.

Configuration

You can configure OSMnx using the settings module. Here you can adjust logging behavior, caching, server endpoints, and more. You can also configure OSMnx to retrieve historical snapshots of OpenStreetMap data as of a certain date. Refer to the FAQ below for server usage limitations.

Geocoding and Querying

OSMnx geocodes place names and addresses with the OpenStreetMap Nominatim [https://nominatim.org] API. You can use the geocoder module to geocode place names or addresses to lat-lon coordinates. Or, you can retrieve place boundaries or any other OpenStreetMap elements by name or ID.

Using the features and graph modules, as described below, you can download data by lat-lon point, address, bounding box, bounding polygon, or place name (e.g., neighborhood, city, county, etc).

Urban Amenities

Using OSMnx’s features module, you can search for and download geospatial features [https://wiki.openstreetmap.org/wiki/Map_features] (such as building footprints, grocery stores, schools, public parks, transit stops, etc) from the OpenStreetMap Overpass [https://wiki.openstreetmap.org/wiki/Overpass_API] API as a GeoPandas GeoDataFrame. This uses OpenStreetMap tags [https://wiki.openstreetmap.org/wiki/Tags] to search for matching elements [https://wiki.openstreetmap.org/wiki/Elements].

Modeling a Network

Using OSMnx’s graph module, you can retrieve any spatial network data (such as streets, paths, rail, canals, etc) from the Overpass API and model them as NetworkX MultiDiGraphs [https://networkx.org/documentation/stable/reference/classes/multidigraph.html].

MultiDiGraphs are nonplanar directed graphs with possible self-loops and parallel edges. Thus, a one-way street will be represented with a single directed edge from node u to node v, but a bidirectional street will be represented with two reciprocal directed edges (with identical geometries): one from node u to node v and another from v to u, to represent both possible directions of flow. Because these graphs are nonplanar, they correctly model the topology of interchanges, bridges, and tunnels. That is, edge crossings in a two-dimensional plane are not intersections in an OSMnx model unless they represent true junctions in the three-dimensional real world.

The graph module uses filters to query the Overpass API: you can either specify a built-in network type or provide your own custom filter with Overpass QL [https://wiki.openstreetmap.org/wiki/Overpass_API/Overpass_QL]. Refer to the graph module’s documentation for more details. Under the hood, OSMnx does several things to generate the best possible model. It initially creates a 500m-buffered graph before truncating it to your desired query area, to ensure accurate streets-per-node stats and to attenuate graph perimeter effects. It also simplifies the graph topology as discussed below.

Topology Clean-Up

The simplification module automatically processes the network’s topology from the original raw OpenStreetMap data, such that nodes represent intersections/dead-ends and edges represent the street segments that link them. This takes two primary forms: graph simplification and intersection consolidation.

Graph simplification cleans up the graph’s topology so that nodes represent intersections or dead-ends and edges represent street segments. This is important because in OpenStreetMap raw data, ways comprise sets of straight-line segments between nodes: that is, nodes are vertices for streets’ curving line geometries, not just intersections and dead-ends. By default, OSMnx simplifies this topology by discarding non-intersection/dead-end nodes while retaining the complete true edge geometry as an edge attribute. When multiple OpenStreetMap ways are merged into a single graph edge, the ways’ attribute values can be aggregated into a single value.

Intersection consolidation is important because many real-world street networks feature complex intersections and traffic circles, resulting in a cluster of graph nodes where there is really just one true intersection as we would think of it in transportation or urban design. Similarly, divided roads are often represented by separate centerline edges: the intersection of two divided roads thus creates 4 nodes, representing where each edge intersects a perpendicular edge, but these 4 nodes represent a single intersection in the real world. OSMnx can consolidate such complex intersections into a single node and optionally rebuild the graph’s edge topology accordingly. When multiple OpenStreetMap nodes are merged into a single graph node, the nodes’ attribute values can be aggregated into a single value.

Converting, Projecting, Saving

OSMnx’s convert module can convert a MultiDiGraph to a MultiGraph [https://networkx.org/documentation/stable/reference/classes/multigraph.html] if you prefer an undirected representation of the network, or to a DiGraph [https://networkx.org/documentation/stable/reference/classes/digraph.html] if you prefer a directed representation without any parallel edges. It can also convert a MultiDiGraph to/from GeoPandas node and edge GeoDataFrames [https://geopandas.org/en/stable/docs/reference/geodataframe.html]. The nodes GeoDataFrame is indexed by OSM ID and the edges GeoDataFrame is multi-indexed by u, v, key just like a NetworkX edge. This allows you to load arbitrary node/edge ShapeFiles or GeoPackage layers as GeoDataFrames then model them as a MultiDiGraph for graph analysis.

You can easily project your graph to different coordinate reference systems using the projection module. If you’re unsure which CRS [https://en.wikipedia.org/wiki/Coordinate_reference_system] you want to project to, OSMnx can automatically determine an appropriate UTM CRS for you.

Using the io module, you can save your graph to disk as a GraphML file (to load into other network analysis software), a GeoPackage (to load into other GIS software), or an OSM XML file. Use the GraphML format whenever saving a graph for later work with OSMnx.

Working with Elevation

The elevation module lets you automatically attach elevations to the graph’s nodes from a local raster file or a web service like the Google Maps Elevation API [https://developers.google.com/maps/documentation/elevation]. You can also calculate edge grades (i.e., rise-over-run) and analyze the steepness of certain streets or routes.

Network Measures

You can use the stats module to calculate a variety of geometric and topological measures as well as street network bearing and orientation statistics. These measures define streets as the edges in an undirected representation of the graph to prevent double-counting bidirectional edges of a two-way street. You can easily generate common stats in transportation studies, urban design, and network science, including intersection density, circuity, average node degree (connectedness), betweenness centrality, and much more.

You can also use NetworkX directly to calculate additional topological network measures.

Routing

The distance module can find the nearest node(s) or edge(s) to coordinates using a fast spatial index. The routing module can solve shortest paths for network routing, parallelized with multiprocessing, using different weights (e.g., distance, travel time, elevation change, etc). It can also impute missing speeds to the graph edges. This imputation can obviously be imprecise, so the user can override it by passing in arguments that define local speed limits. It can also calculate free-flow travel times for each edge.

Visualization

You can plot graphs, routes, network figure-ground diagrams, building footprints, and street network orientation rose diagrams (aka, polar histograms) with the plot module. You can also explore street networks, routes, or geospatial features as interactive Folium [https://python-visualization.github.io/folium/] web maps.

More Info

All of this functionality is demonstrated step-by-step in the OSMnx Examples Gallery [https://github.com/gboeing/osmnx-examples], and usage is detailed in the User Reference. More feature development details are in the Changelog [https://github.com/gboeing/osmnx/blob/main/CHANGELOG.md]. Consult the Further Reading resources for additional technical details and research.

Frequently Asked Questions

How do I install OSMnx? Follow the Installation guide.

How do I use OSMnx? Check out the step-by-step tutorials in the OSMnx Examples Gallery [https://github.com/gboeing/osmnx-examples].

How does this or that function work? Consult the User Reference.

What can I do with OSMnx? Check out recent projects [https://geoffboeing.com/2018/03/osmnx-features-roundup] that use OSMnx.

I have a usage question. Please ask it on StackOverflow [https://stackoverflow.com/search?q=osmnx].

Are there any usage limitations? Yes. Refer to the Nominatim Usage Policy [https://operations.osmfoundation.org/policies/nominatim/] and Overpass Commons [https://dev.overpass-api.de/overpass-doc/en/preface/commons.html] documentation for usage limitations and restrictions that you must adhere to at all times. If you use an alternative Nominatim/Overpass instance, ensure you understand and obey their usage policies. If you need to exceed these limitations, consider installing your own hosted instance and setting OSMnx to use it.

Installation

Conda

The official supported way to install OSMnx is with conda:

conda create -n ox -c conda-forge --strict-channel-priority osmnx

This creates a new conda environment and installs OSMnx into it, via the conda-forge channel. If you want other packages, such as jupyterlab, installed in this environment as well, just add their names after osmnx above.

To upgrade OSMnx to a newer release, remove the conda environment you created and then create a new one again, as above. Don’t just run “conda update” or you could get package conflicts. See the conda [https://conda.io/] and conda-forge [https://conda-forge.org/] documentation for more details.

Docker

You can run OSMnx + JupyterLab directly from the official OSMnx Docker [https://hub.docker.com/r/gboeing/osmnx] image.

Pip

You may be able to install OSMnx with pip [https://pypi.org/project/osmnx/] but this is not officially supported. OSMnx is written in pure Python and its installation alone is thus trivially simple if you already have all of its dependencies installed and tested on your system. OSMnx depends on other packages written in C, and installing those dependencies with pip is sometimes challenging depending on your specific system’s configuration. Therefore, if you’re not sure what you’re doing, just follow the conda instructions above to avoid installation problems.

User Reference

This is the User Reference for the OSMnx package. If you are looking for an introduction to OSMnx, read the Getting Started guide. This guide describes the usage of OSMnx’s public API.

OSMnx 2.0 is in beta: read the migration guide [https://github.com/gboeing/osmnx/issues/1123].

osmnx.bearing module

Calculate graph edge bearings and orientation entropy.

	
osmnx.bearing.add_edge_bearings(G)

	Calculate and add compass bearing attributes to all graph edges.

Vectorized function to calculate (initial) bearing from origin node to
destination node for each edge in a directed, unprojected graph then add
these bearings as new bearing edge attributes. Bearing represents angle
in degrees (clockwise) between north and the geodesic line from the origin
node to the destination node. Ignores self-loop edges as their bearings
are undefined.

	Parameters:

	G (MultiDiGraph) – Unprojected graph.

	Returns:

	G – Graph with bearing attributes on the edges.

	Return type:

	networkx.MultiDiGraph

	
osmnx.bearing.calculate_bearing(lat1, lon1, lat2, lon2)

	Calculate the compass bearing(s) between pairs of lat-lon points.

Vectorized function to calculate initial bearings between two points’
coordinates or between arrays of points’ coordinates. Expects coordinates
in decimal degrees. The bearing represents the clockwise angle in degrees
between north and the geodesic line from (lat1, lon1) to (lat2, lon2).

	Parameters:

	
	lat1 (float | npt.NDArray[np.float64]) – First point’s latitude coordinate(s).

	lon1 (float | npt.NDArray[np.float64]) – First point’s longitude coordinate(s).

	lat2 (float | npt.NDArray[np.float64]) – Second point’s latitude coordinate(s).

	lon2 (float | npt.NDArray[np.float64]) – Second point’s longitude coordinate(s).

	Returns:

	bearing – The bearing(s) in decimal degrees.

	Return type:

	float | npt.NDArray[np.float64]

	
osmnx.bearing.orientation_entropy(G, *, num_bins=36, min_length=0, weight=None)

	Calculate graph’s orientation entropy.

Orientation entropy is the Shannon entropy of the graphs’ edges’ bearings
across evenly spaced bins. Ignores self-loop edges as their bearings are
undefined. If G is a MultiGraph, all edge bearings will be bidirectional
(ie, two reciprocal bearings per undirected edge). If G is a
MultiDiGraph, all edge bearings will be directional (ie, one bearing per
directed edge).

For more info see: Boeing, G. 2019. “Urban Spatial Order: Street Network
Orientation, Configuration, and Entropy.” Applied Network Science, 4 (1),
67. https://doi.org/10.1007/s41109-019-0189-1

	Parameters:

	
	G (nx.MultiGraph | nx.MultiDiGraph) – Unprojected graph with bearing attributes on each edge.

	num_bins (int) – Number of bins. For example, if num_bins=36 is provided, then each
bin will represent 10 degrees around the compass.

	min_length (float) – Ignore edges with “length” attributes less than min_length. Useful
to ignore the noise of many very short edges.

	weight (str | None) – If None, apply equal weight for each bearing. Otherwise, weight edges’
bearings by this (non-null) edge attribute. For example, if “length”
is provided, each edge’s bearing observation will be weighted by its
“length” attribute value.

	Returns:

	entropy – The orientation entropy of G.

	Return type:

	float

osmnx.convert module

Convert spatial graphs to/from different data types.

	
osmnx.convert.graph_from_gdfs(gdf_nodes, gdf_edges, *, graph_attrs=None)

	Convert node and edge GeoDataFrames to a MultiDiGraph.

This function is the inverse of graph_to_gdfs and is designed to work in
conjunction with it. However, you can convert arbitrary node and edge
GeoDataFrames as long as 1) gdf_nodes is uniquely indexed by osmid, 2)
gdf_nodes contains x and y coordinate columns representing node
geometries, 3) gdf_edges is uniquely multi-indexed by (u, v, key)
(following normal MultiDiGraph structure). This allows you to load any
node/edge Shapefiles or GeoPackage layers as GeoDataFrames then convert
them to a MultiDiGraph for network analysis.

Note that any geometry attribute on gdf_nodes is discarded, since x
and y provide the necessary node geometry information instead.

	Parameters:

	
	gdf_nodes (GeoDataFrame) – GeoDataFrame of graph nodes uniquely indexed by osmid.

	gdf_edges (GeoDataFrame) – GeoDataFrame of graph edges uniquely multi-indexed by (u, v, key).

	graph_attrs (dict[str, Any] | None) – The new G.graph attribute dictionary. If None, use gdf_edges’s CRS
as the only graph-level attribute (gdf_edges must have its crs
attribute set).

	Returns:

	MultiDiGraph – G

	Return type:

	networkx.MultiDiGraph

	
osmnx.convert.graph_to_gdfs(G, *, nodes=True, edges=True, node_geometry=True, fill_edge_geometry=True)

	Convert a MultiGraph or MultiDiGraph to node and/or edge GeoDataFrames.

This function is the inverse of graph_from_gdfs.

	Parameters:

	
	G (nx.MultiGraph | nx.MultiDiGraph) – Input graph.

	nodes (bool) – If True, convert graph nodes to a GeoDataFrame and return it.

	edges (bool) – If True, convert graph edges to a GeoDataFrame and return it.

	node_geometry (bool) – If True, create a geometry column from node “x” and “y” attributes.

	fill_edge_geometry (bool) – If True, fill missing edge geometry fields using endpoint nodes’
coordinates to create a LineString.

	Returns:

	gdf_nodes or gdf_edges or (gdf_nodes, gdf_edges) – gdf_nodes is indexed by osmid and gdf_edges is multi-indexed by
(u, v, key) following normal MultiGraph/MultiDiGraph structure.

	Return type:

	gpd.GeoDataFrame | tuple[gpd.GeoDataFrame, gpd.GeoDataFrame]

	
osmnx.convert.to_digraph(G, *, weight='length')

	Convert MultiDiGraph to DiGraph.

Chooses between parallel edges by minimizing weight attribute value. See
also to_undirected to convert MultiDiGraph to MultiGraph.

	Parameters:

	
	G (MultiDiGraph) – Input graph.

	weight (str) – Attribute value to minimize when choosing between parallel edges.

	Returns:

	DiGraph – G

	Return type:

	networkx.DiGraph

	
osmnx.convert.to_undirected(G)

	Convert MultiDiGraph to undirected MultiGraph.

Maintains parallel edges only if their geometries differ. See also
to_digraph to convert MultiDiGraph to DiGraph.

	Parameters:

	G (MultiDiGraph) – Input graph.

	Returns:

	MultiGraph – Gu

	Return type:

	networkx.MultiGraph

osmnx.distance module

Calculate distances and find nearest graph node/edge(s) to point(s).

	
osmnx.distance.add_edge_lengths(G, *, edges=None)

	Calculate and add length attribute (in meters) to each edge.

Vectorized function to calculate great-circle distance between each edge’s
incident nodes. Ensure graph is unprojected and unsimplified to calculate
accurate distances.

Note: this function is run by all the graph.graph_from_x functions
automatically to add length attributes to all edges. It calculates edge
lengths as the great-circle distance from node u to node v. When
OSMnx automatically runs this function upon graph creation, it does it
before simplifying the graph: thus it calculates the straight-line lengths
of edge segments that are themselves all straight. Only after
simplification do edges take on (potentially) curvilinear geometry. If you
wish to calculate edge lengths later, note that you will be calculating
straight-line distances which necessarily ignore the curvilinear geometry.
Thus you only want to run this function on a graph with all straight edges
(such as is the case with an unsimplified graph).

	Parameters:

	
	G (MultiDiGraph) – Unprojected and unsimplified input graph.

	edges (Iterable[tuple[int, int, int]] | None) – The subset of edges to add length attributes to, as (u, v, k)
tuples. If None, add lengths to all edges.

	Returns:

	G – Graph with length attributes on the edges.

	Return type:

	networkx.MultiDiGraph

	
osmnx.distance.euclidean(y1, x1, y2, x2)

	Calculate Euclidean distances between pairs of points.

Vectorized function to calculate the Euclidean distance between two
points’ coordinates or between arrays of points’ coordinates. For accurate
results, use projected coordinates rather than decimal degrees.

	Parameters:

	
	y1 (float | npt.NDArray[np.float64]) – First point’s y coordinate(s).

	x1 (float | npt.NDArray[np.float64]) – First point’s x coordinate(s).

	y2 (float | npt.NDArray[np.float64]) – Second point’s y coordinate(s).

	x2 (float | npt.NDArray[np.float64]) – Second point’s x coordinate(s).

	Returns:

	dist – Distance from each (x1, y1) point to each (x2, y2) point in same
units as the points’ coordinates.

	Return type:

	float | npt.NDArray[np.float64]

	
osmnx.distance.great_circle(lat1, lon1, lat2, lon2, earth_radius=6371009)

	Calculate great-circle distances between pairs of points.

Vectorized function to calculate the great-circle distance between two
points’ coordinates or between arrays of points’ coordinates using the
haversine formula. Expects coordinates in decimal degrees.

	Parameters:

	
	lat1 (float | npt.NDArray[np.float64]) – First point’s latitude coordinate(s).

	lon1 (float | npt.NDArray[np.float64]) – First point’s longitude coordinate(s).

	lat2 (float | npt.NDArray[np.float64]) – Second point’s latitude coordinate(s).

	lon2 (float | npt.NDArray[np.float64]) – Second point’s longitude coordinate(s).

	earth_radius (float) – Earth’s radius in units in which distance will be returned (default
represents meters).

	Returns:

	dist – Distance from each (lat1, lon1) point to each (lat2, lon2) point
in units of earth_radius.

	Return type:

	float | npt.NDArray[np.float64]

	
osmnx.distance.nearest_edges(G, X, Y, *, return_dist=False)

	Find the nearest edge to a point or to each of several points.

If X and Y are single coordinate values, this will return the nearest
edge to that point. If X and Y are iterables of coordinate values,
this will return the nearest edge to each point. This uses an R-tree
spatial index and minimizes the Euclidean distance from each point to the
possible matches. For accurate results, use a projected graph and points.

	Parameters:

	
	G (nx.MultiDiGraph) – Graph in which to find nearest edges.

	X (float | Iterable[float]) – The points’ x (longitude) coordinates, in same CRS/units as graph and
containing no nulls.

	Y (float | Iterable[float]) – The points’ y (latitude) coordinates, in same CRS/units as graph and
containing no nulls.

	return_dist (bool) – If True, optionally also return the distance(s) between point(s) and
nearest edge(s).

	Returns:

	ne or (ne, dist) – Nearest edge ID(s) as (u, v, k) tuples, or optionally a tuple of
ID(s) and distance(s) between each point and its nearest edge.

	Return type:

	tuple[int, int, int] | npt.NDArray[np.object_] | tuple[tuple[int, int, int], float] | tuple[npt.NDArray[np.object_], npt.NDArray[np.float64]]

	
osmnx.distance.nearest_nodes(G, X, Y, *, return_dist=False)

	Find the nearest node to a point or to each of several points.

If X and Y are single coordinate values, this will return the nearest
node to that point. If X and Y are iterables of coordinate values,
this will return the nearest node to each point.

If the graph is projected, this uses a k-d tree for Euclidean nearest
neighbor search, which requires that scipy is installed as an optional
dependency. If it is unprojected, this uses a ball tree for haversine
nearest neighbor search, which requires that scikit-learn is installed as
an optional dependency.

	Parameters:

	
	G (nx.MultiDiGraph) – Graph in which to find nearest nodes.

	X (float | Iterable[float]) – The points’ x (longitude) coordinates, in same CRS/units as graph and
containing no nulls.

	Y (float | Iterable[float]) – The points’ y (latitude) coordinates, in same CRS/units as graph and
containing no nulls.

	return_dist (bool) – If True, optionally also return the distance(s) between point(s) and
nearest node(s).

	Returns:

	nn or (nn, dist) – Nearest node ID(s) or optionally a tuple of ID(s) and distance(s)
between each point and its nearest node.

	Return type:

	int | npt.NDArray[np.int64] | tuple[int, float] | tuple[npt.NDArray[np.int64], npt.NDArray[np.float64]]

osmnx.elevation module

Add node elevations from raster files or web APIs, and calculate edge grades.

	
osmnx.elevation.add_edge_grades(G, *, add_absolute=True)

	Calculate and add grade attributes to all graph edges.

Vectorized function to calculate the directed grade (i.e., rise over run)
for each edge in the graph and add it to the edge as an attribute. Nodes
must already have elevation and length attributes before using this
function.

See also the add_node_elevations_raster and add_node_elevations_google
functions.

	Parameters:

	
	G (MultiDiGraph) – Graph with elevation node attributes.

	add_absolute (bool) – If True, also add absolute value of grade as grade_abs attribute.

	Returns:

	G – Graph with grade (and optionally grade_abs) attributes on the
edges.

	Return type:

	networkx.MultiDiGraph

	
osmnx.elevation.add_node_elevations_google(G, *, api_key=None, batch_size=512, pause=0)

	Add elevation (meters) attributes to all nodes using a web service.

By default, this uses the Google Maps Elevation API but you can optionally
use an equivalent API with the same interface and response format, such as
Open Topo Data, via the settings module’s elevation_url_template. The
Google Maps Elevation API requires an API key but other providers may not.
You can find more information about the Google Maps Elevation API at:
https://developers.google.com/maps/documentation/elevation

For a free local alternative see the add_node_elevations_raster
function. See also the add_edge_grades function.

	Parameters:

	
	G (MultiDiGraph) – Graph to add elevation data to.

	api_key (str | None) – A valid API key. Can be None if the API does not require a key.

	batch_size (int) – Max number of coordinate pairs to submit in each request (depends on
provider’s limits). Google’s limit is 512.

	pause (float) – How long to pause in seconds between API calls, which can be increased
if you get rate limited.

	Returns:

	G – Graph with elevation attributes on the nodes.

	Return type:

	networkx.MultiDiGraph

	
osmnx.elevation.add_node_elevations_raster(G, filepath, *, band=1, cpus=None)

	Add elevation attributes to all nodes from local raster file(s).

If filepath is an iterable of paths, this will generate a virtual raster
composed of the files at those paths as an intermediate step.

See also the add_edge_grades function.

	Parameters:

	
	G (MultiDiGraph) – Graph in same CRS as raster.

	filepath (str | Path | Iterable[str | Path]) – The path(s) to the raster file(s) to query.

	band (int) – Which raster band to query.

	cpus (int | None) – How many CPU cores to use. If None, use all available.

	Returns:

	G – Graph with elevation attributes on the nodes.

	Return type:

	networkx.MultiDiGraph

osmnx.features module

Download and create GeoDataFrames from OpenStreetMap geospatial features.

Retrieve points of interest, building footprints, transit lines/stops, or any
other map features from OSM, including their geometries and attribute data,
then construct a GeoDataFrame of them. You can use this module to query for
nodes, ways, and relations (the latter of type “multipolygon” or “boundary”
only) by passing a dictionary of desired OSM tags.

For more details, see https://wiki.openstreetmap.org/wiki/Map_features and
https://wiki.openstreetmap.org/wiki/Elements

Refer to the Getting Started guide for usage limitations.

	
osmnx.features.features_from_address(address, tags, dist)

	Download OSM features within some distance of an address.

You can use the settings module to retrieve a snapshot of historical OSM
data as of a certain date, or to configure the Overpass server timeout,
memory allocation, and other custom settings. This function searches for
features using tags. For more details, see:
https://wiki.openstreetmap.org/wiki/Map_features

	Parameters:

	
	address (str) – The address to geocode and use as the center point around which to
retrieve the features.

	tags (dict[str, bool | str | list[str]]) – Tags for finding elements in the selected area. Results are the union,
not intersection of the tags and each result matches at least one tag.
The keys are OSM tags (e.g., building, landuse, highway, etc)
and the values can be either True to retrieve all elements matching
the tag, or a string to retrieve a single tag:value combination, or a
list of strings to retrieve multiple values for the tag. For example,
tags = {‘building’: True} would return all buildings in the area.
Or, tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’],
‘highway’:’bus_stop’} would return all amenities, any landuse=retail,
any landuse=commercial, and any highway=bus_stop.

	dist (float) – Distance in meters from address to create a bounding box to query.

	Returns:

	GeoDataFrame – gdf

	Return type:

	geopandas.GeoDataFrame

	
osmnx.features.features_from_bbox(bbox, tags)

	Download OSM features within a lat-lon bounding box.

You can use the settings module to retrieve a snapshot of historical OSM
data as of a certain date, or to configure the Overpass server timeout,
memory allocation, and other custom settings. This function searches for
features using tags. For more details, see:
https://wiki.openstreetmap.org/wiki/Map_features

	Parameters:

	
	bbox (tuple[float, float, float, float]) – Bounding box as (north, south, east, west). Coordinates should be in
unprojected latitude-longitude degrees (EPSG:4326).

	tags (dict[str, bool | str | list[str]]) – Tags for finding elements in the selected area. Results are the union,
not intersection of the tags and each result matches at least one tag.
The keys are OSM tags (e.g., building, landuse, highway, etc)
and the values can be either True to retrieve all elements matching
the tag, or a string to retrieve a single tag:value combination, or a
list of strings to retrieve multiple values for the tag. For example,
tags = {‘building’: True} would return all buildings in the area.
Or, tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’],
‘highway’:’bus_stop’} would return all amenities, any landuse=retail,
any landuse=commercial, and any highway=bus_stop.

	Returns:

	GeoDataFrame – gdf

	Return type:

	geopandas.GeoDataFrame

	
osmnx.features.features_from_place(query, tags, *, which_result=None)

	Download OSM features within the boundaries of some place(s).

The query must be geocodable and OSM must have polygon boundaries for the
geocode result. If OSM does not have a polygon for this place, you can
instead get features within it using the features_from_address
function, which geocodes the place name to a point and gets the features
within some distance of that point.

If OSM does have polygon boundaries for this place but you’re not finding
it, try to vary the query string, pass in a structured query dict, or vary
the which_result argument to use a different geocode result. If you know
the OSM ID of the place, you can retrieve its boundary polygon using the
geocode_to_gdf function, then pass it to the features_from_polygon
function.

You can use the settings module to retrieve a snapshot of historical OSM
data as of a certain date, or to configure the Overpass server timeout,
memory allocation, and other custom settings. This function searches for
features using tags. For more details, see:
https://wiki.openstreetmap.org/wiki/Map_features

	Parameters:

	
	query (str | dict[str, str] | list[str | dict[str, str]]) – The query or queries to geocode to retrieve place boundary polygon(s).

	tags (dict[str, bool | str | list[str]]) – Tags for finding elements in the selected area. Results are the union,
not intersection of the tags and each result matches at least one tag.
The keys are OSM tags (e.g., building, landuse, highway, etc)
and the values can be either True to retrieve all elements matching
the tag, or a string to retrieve a single tag:value combination, or a
list of strings to retrieve multiple values for the tag. For example,
tags = {‘building’: True} would return all buildings in the area.
Or, tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’],
‘highway’:’bus_stop’} would return all amenities, any landuse=retail,
any landuse=commercial, and any highway=bus_stop.

	which_result (int | None | list[int | None]) – Which search result to return. If None, auto-select the first
(Multi)Polygon or raise an error if OSM doesn’t return one.

	Returns:

	GeoDataFrame – gdf

	Return type:

	geopandas.GeoDataFrame

	
osmnx.features.features_from_point(center_point, tags, dist)

	Download OSM features within some distance of a lat-lon point.

You can use the settings module to retrieve a snapshot of historical OSM
data as of a certain date, or to configure the Overpass server timeout,
memory allocation, and other custom settings. This function searches for
features using tags. For more details, see:
https://wiki.openstreetmap.org/wiki/Map_features

	Parameters:

	
	center_point (tuple[float, float]) – The (lat, lon) center point around which to retrieve the features.
Coordinates should be in unprojected latitude-longitude degrees
(EPSG:4326).

	tags (dict[str, bool | str | list[str]]) – Tags for finding elements in the selected area. Results are the union,
not intersection of the tags and each result matches at least one tag.
The keys are OSM tags (e.g., building, landuse, highway, etc)
and the values can be either True to retrieve all elements matching
the tag, or a string to retrieve a single tag:value combination, or a
list of strings to retrieve multiple values for the tag. For example,
tags = {‘building’: True} would return all buildings in the area.
Or, tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’],
‘highway’:’bus_stop’} would return all amenities, any landuse=retail,
any landuse=commercial, and any highway=bus_stop.

	dist (float) – Distance in meters from center_point to create a bounding box to
query.

	Returns:

	GeoDataFrame – gdf

	Return type:

	geopandas.GeoDataFrame

	
osmnx.features.features_from_polygon(polygon, tags)

	Download OSM features within the boundaries of a (Multi)Polygon.

You can use the settings module to retrieve a snapshot of historical OSM
data as of a certain date, or to configure the Overpass server timeout,
memory allocation, and other custom settings. This function searches for
features using tags. For more details, see:
https://wiki.openstreetmap.org/wiki/Map_features

	Parameters:

	
	polygon (Polygon | MultiPolygon) – The geometry within which to retrieve features. Coordinates should be
in unprojected latitude-longitude degrees (EPSG:4326).

	tags (dict[str, bool | str | list[str]]) – Tags for finding elements in the selected area. Results are the union,
not intersection of the tags and each result matches at least one tag.
The keys are OSM tags (e.g., building, landuse, highway, etc)
and the values can be either True to retrieve all elements matching
the tag, or a string to retrieve a single tag:value combination, or a
list of strings to retrieve multiple values for the tag. For example,
tags = {‘building’: True} would return all buildings in the area.
Or, tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’],
‘highway’:’bus_stop’} would return all amenities, any landuse=retail,
any landuse=commercial, and any highway=bus_stop.

	Returns:

	gpd.GeoDataFrame – gdf

	Return type:

	gpd.GeoDataFrame

	
osmnx.features.features_from_xml(filepath, *, polygon=None, tags=None, encoding='utf-8')

	Create a GeoDataFrame of OSM features from data in an OSM XML file.

Because this function creates a GeoDataFrame of features from an OSM XML
file that has already been downloaded (i.e., no query is made to the
Overpass API), the polygon and tags arguments are optional. If they
are None, filtering will be skipped.

	Parameters:

	
	filepath (str | Path) – Path to file containing OSM XML data.

	tags (dict[str, bool | str | list[str]] | None) – Query tags to optionally filter the final GeoDataFrame.

	polygon (Polygon | MultiPolygon | None) – Spatial boundaries to optionally filter the final GeoDataFrame.

	encoding (str) – The OSM XML file’s character encoding.

	Returns:

	gpd.GeoDataFrame – gdf

	Return type:

	gpd.GeoDataFrame

osmnx.geocoder module

Geocode place names or addresses or retrieve OSM elements by place name or ID.

This module uses the Nominatim API’s “search” and “lookup” endpoints. For more
details see https://wiki.openstreetmap.org/wiki/Elements and
https://nominatim.org/.

	
osmnx.geocoder.geocode(query)

	Geocode place names or addresses to (lat, lon) with the Nominatim API.

This geocodes the query via the Nominatim “search” endpoint.

	Parameters:

	query (str) – The query string to geocode.

	Returns:

	point – The (lat, lon) coordinates returned by the geocoder.

	Return type:

	tuple[float, float]

	
osmnx.geocoder.geocode_to_gdf(query, *, which_result=None, by_osmid=False)

	Retrieve OSM elements by place name or OSM ID with the Nominatim API.

If searching by place name, the query argument can be a string or
structured dict, or a list of such strings/dicts to send to the geocoder.
This uses the Nominatim “search” endpoint to geocode the place name to the
best-matching OSM element, then returns that element and its attribute
data.

You can instead query by OSM ID by passing by_osmid=True. This uses the
Nominatim “lookup” endpoint to retrieve the OSM element with that ID. In
this case, the function treats the query argument as an OSM ID (or list
of OSM IDs), which must be prepended with their types: node (N), way (W),
or relation (R) in accordance with the Nominatim API format. For example,
query=[“R2192363”, “N240109189”, “W427818536”].

If query is a list, then which_result must be either an int or a list
with the same length as query. The queries you provide must be
resolvable to elements in the Nominatim database. The resulting
GeoDataFrame’s geometry column contains place boundaries if they exist.

	Parameters:

	
	query (str | dict[str, str] | list[str | dict[str, str]]) – The query string(s) or structured dict(s) to geocode.

	which_result (int | None | list[int | None]) – Which search result to return. If None, auto-select the first
(Multi)Polygon or raise an error if OSM doesn’t return one. To get
the top match regardless of geometry type, set which_result=1.
Ignored if by_osmid=True.

	by_osmid (bool) – If True, treat query as an OSM ID lookup rather than text search.

	Returns:

	gdf – GeoDataFrame with one row for each query result.

	Return type:

	geopandas.GeoDataFrame

osmnx.graph module

Download and create graphs from OpenStreetMap data.

Refer to the Getting Started guide for usage limitations.

	
osmnx.graph.graph_from_address(address, dist, *, dist_type='bbox', network_type='all', simplify=True, retain_all=False, truncate_by_edge=False, custom_filter=None)

	Download and create a graph within some distance of an address.

This function uses filters to query the Overpass API: you can either
specify a pre-defined network_type or provide your own custom_filter
with Overpass QL.

Use the settings module’s useful_tags_node and useful_tags_way
settings to configure which OSM node/way tags are added as graph node/edge
attributes. You can also use the settings module to retrieve a snapshot
of historical OSM data as of a certain date, or to configure the Overpass
server timeout, memory allocation, and other custom settings.

	Parameters:

	
	address (str) – The address to geocode and use as the central point around which to
construct the graph.

	dist (float) – Retain only those nodes within this many meters of center_point,
measuring distance according to dist_type.

	dist_type (str) – {“network”, “bbox”}
If “bbox”, retain only those nodes within a bounding box of dist. If
“network”, retain only those nodes within dist network distance from
the centermost node.

	network_type (str) – {“all”, “all_public”, “bike”, “drive”, “drive_service”, “walk”}
What type of street network to retrieve if custom_filter is None.

	simplify (bool) – If True, simplify graph topology with the simplify_graph function.

	retain_all (bool) – If True, return the entire graph even if it is not connected. If
False, retain only the largest weakly connected component.

	truncate_by_edge (bool) – If True, retain nodes outside bounding box if at least one of node’s
neighbors is within the bounding box.

	custom_filter (str | None) – A custom ways filter to be used instead of the network_type presets,
e.g. ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass
in a network_type that is in settings.bidirectional_network_types
if you want the graph to be fully bidirectional.

	Returns:

	nx.MultiDiGraph | tuple[nx.MultiDiGraph, tuple[float, float]] – G or (G, (lat, lon))

	Return type:

	nx.MultiDiGraph | tuple[nx.MultiDiGraph, tuple[float, float]]

Notes

Very large query areas use the utils_geo._consolidate_subdivide_geometry
function to automatically make multiple requests: see that function’s
documentation for caveats.

	
osmnx.graph.graph_from_bbox(bbox, *, network_type='all', simplify=True, retain_all=False, truncate_by_edge=False, custom_filter=None)

	Download and create a graph within a lat-lon bounding box.

This function uses filters to query the Overpass API: you can either
specify a pre-defined network_type or provide your own custom_filter
with Overpass QL.

Use the settings module’s useful_tags_node and useful_tags_way
settings to configure which OSM node/way tags are added as graph node/edge
attributes. You can also use the settings module to retrieve a snapshot
of historical OSM data as of a certain date, or to configure the Overpass
server timeout, memory allocation, and other custom settings.

	Parameters:

	
	bbox (tuple[float, float, float, float]) – Bounding box as (north, south, east, west). Coordinates should be in
unprojected latitude-longitude degrees (EPSG:4326).

	network_type (str) – {“all”, “all_public”, “bike”, “drive”, “drive_service”, “walk”}
What type of street network to retrieve if custom_filter is None.

	simplify (bool) – If True, simplify graph topology via the simplify_graph function.

	retain_all (bool) – If True, return the entire graph even if it is not connected. If
False, retain only the largest weakly connected component.

	truncate_by_edge (bool) – If True, retain nodes outside bounding box if at least one of node’s
neighbors is within the bounding box.

	custom_filter (str | None) – A custom ways filter to be used instead of the network_type presets,
e.g. ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass
in a network_type that is in settings.bidirectional_network_types
if you want the graph to be fully bidirectional.

	Returns:

	MultiDiGraph – G

	Return type:

	networkx.MultiDiGraph

Notes

Very large query areas use the utils_geo._consolidate_subdivide_geometry
function to automatically make multiple requests: see that function’s
documentation for caveats.

	
osmnx.graph.graph_from_place(query, *, network_type='all', simplify=True, retain_all=False, truncate_by_edge=False, which_result=None, custom_filter=None)

	Download and create a graph within the boundaries of some place(s).

The query must be geocodable and OSM must have polygon boundaries for the
geocode result. If OSM does not have a polygon for this place, you can
instead get its street network using the graph_from_address function,
which geocodes the place name to a point and gets the network within some
distance of that point.

If OSM does have polygon boundaries for this place but you’re not finding
it, try to vary the query string, pass in a structured query dict, or vary
the which_result argument to use a different geocode result. If you know
the OSM ID of the place, you can retrieve its boundary polygon using the
geocode_to_gdf function, then pass it to the features_from_polygon
function.

This function uses filters to query the Overpass API: you can either
specify a pre-defined network_type or provide your own custom_filter
with Overpass QL.

Use the settings module’s useful_tags_node and useful_tags_way
settings to configure which OSM node/way tags are added as graph node/edge
attributes. You can also use the settings module to retrieve a snapshot
of historical OSM data as of a certain date, or to configure the Overpass
server timeout, memory allocation, and other custom settings.

	Parameters:

	
	query (str | dict[str, str] | list[str | dict[str, str]]) – The query or queries to geocode to retrieve place boundary polygon(s).

	network_type (str) – {“all”, “all_public”, “bike”, “drive”, “drive_service”, “walk”}
What type of street network to retrieve if custom_filter is None.

	simplify (bool) – If True, simplify graph topology with the simplify_graph function.

	retain_all (bool) – If True, return the entire graph even if it is not connected. If
False, retain only the largest weakly connected component.

	truncate_by_edge (bool) – If True, retain nodes outside bounding box if at least one of node’s
neighbors is within the bounding box.

	which_result (int | None | list[int | None]) – which geocoding result to use. if None, auto-select the first
(Multi)Polygon or raise an error if OSM doesn’t return one.

	custom_filter (str | None) – A custom ways filter to be used instead of the network_type presets,
e.g. ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass
in a network_type that is in settings.bidirectional_network_types
if you want the graph to be fully bidirectional.

	Returns:

	MultiDiGraph – G

	Return type:

	networkx.MultiDiGraph

Notes

Very large query areas use the utils_geo._consolidate_subdivide_geometry
function to automatically make multiple requests: see that function’s
documentation for caveats.

	
osmnx.graph.graph_from_point(center_point, dist, *, dist_type='bbox', network_type='all', simplify=True, retain_all=False, truncate_by_edge=False, custom_filter=None)

	Download and create a graph within some distance of a lat-lon point.

This function uses filters to query the Overpass API: you can either
specify a pre-defined network_type or provide your own custom_filter
with Overpass QL.

Use the settings module’s useful_tags_node and useful_tags_way
settings to configure which OSM node/way tags are added as graph node/edge
attributes. You can also use the settings module to retrieve a snapshot
of historical OSM data as of a certain date, or to configure the Overpass
server timeout, memory allocation, and other custom settings.

	Parameters:

	
	center_point (tuple[float, float]) – The (lat, lon) center point around which to construct the graph.
Coordinates should be in unprojected latitude-longitude degrees
(EPSG:4326).

	dist (float) – Retain only those nodes within this many meters of center_point,
measuring distance according to dist_type.

	dist_type (str) – {“bbox”, “network”}
If “bbox”, retain only those nodes within a bounding box of dist
length/width. If “network”, retain only those nodes within dist
network distance of the nearest node to center_point.

	network_type (str) – {“all”, “all_public”, “bike”, “drive”, “drive_service”, “walk”}
What type of street network to retrieve if custom_filter is None.

	simplify (bool) – If True, simplify graph topology with the simplify_graph function.

	retain_all (bool) – If True, return the entire graph even if it is not connected. If
False, retain only the largest weakly connected component.

	truncate_by_edge (bool) – If True, retain nodes outside bounding box if at least one of node’s
neighbors is within the bounding box.

	custom_filter (str | None) – A custom ways filter to be used instead of the network_type presets,
e.g. ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass
in a network_type that is in settings.bidirectional_network_types
if you want the graph to be fully bidirectional.

	Returns:

	MultiDiGraph – G

	Return type:

	networkx.MultiDiGraph

Notes

Very large query areas use the utils_geo._consolidate_subdivide_geometry
function to automatically make multiple requests: see that function’s
documentation for caveats.

	
osmnx.graph.graph_from_polygon(polygon, *, network_type='all', simplify=True, retain_all=False, truncate_by_edge=False, custom_filter=None)

	Download and create a graph within the boundaries of a (Multi)Polygon.

This function uses filters to query the Overpass API: you can either
specify a pre-defined network_type or provide your own custom_filter
with Overpass QL.

Use the settings module’s useful_tags_node and useful_tags_way
settings to configure which OSM node/way tags are added as graph node/edge
attributes. You can also use the settings module to retrieve a snapshot
of historical OSM data as of a certain date, or to configure the Overpass
server timeout, memory allocation, and other custom settings.

	Parameters:

	
	polygon (Polygon | MultiPolygon) – The geometry within which to construct the graph. Coordinates should
be in unprojected latitude-longitude degrees (EPSG:4326).

	network_type (str) – {“all”, “all_public”, “bike”, “drive”, “drive_service”, “walk”}
What type of street network to retrieve if custom_filter is None.

	simplify (bool) – If True, simplify graph topology with the simplify_graph function.

	retain_all (bool) – If True, return the entire graph even if it is not connected. If
False, retain only the largest weakly connected component.

	truncate_by_edge (bool) – If True, retain nodes outside bounding box if at least one of node’s
neighbors is within the bounding box.

	custom_filter (str | None) – A custom ways filter to be used instead of the network_type presets,
e.g. ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass
in a network_type that is in settings.bidirectional_network_types
if you want the graph to be fully bidirectional.

	Returns:

	nx.MultiDiGraph – G

	Return type:

	nx.MultiDiGraph

Notes

Very large query areas use the utils_geo._consolidate_subdivide_geometry
function to automatically make multiple requests: see that function’s
documentation for caveats.

	
osmnx.graph.graph_from_xml(filepath, *, bidirectional=False, simplify=True, retain_all=False, encoding='utf-8')

	Create a graph from data in an OSM XML file.

Do not load an XML file previously generated by OSMnx: this use case is
not supported and may not behave as expected. To save/load graphs to/from
disk for later use in OSMnx, use the io.save_graphml and
io.load_graphml functions instead.

Use the settings module’s useful_tags_node and useful_tags_way
settings to configure which OSM node/way tags are added as graph node/edge
attributes.

	Parameters:

	
	filepath (str | Path) – Path to file containing OSM XML data.

	bidirectional (bool) – If True, create bidirectional edges for one-way streets.

	simplify (bool) – If True, simplify graph topology with the simplify_graph function.

	retain_all (bool) – If True, return the entire graph even if it is not connected. If
False, retain only the largest weakly connected component.

	encoding (str) – The OSM XML file’s character encoding.

	Returns:

	MultiDiGraph – G

	Return type:

	networkx.MultiDiGraph

osmnx.io module

File I/O functions to save/load graphs to/from files on disk.

	
osmnx.io.load_graphml(filepath=None, *, graphml_str=None, node_dtypes=None, edge_dtypes=None, graph_dtypes=None)

	Load an OSMnx-saved GraphML file from disk or GraphML string.

This function converts node, edge, and graph-level attributes (serialized
as strings) to their appropriate data types. These can be customized as
needed by passing in dtypes arguments providing types or custom converter
functions. For example, if you want to convert some attribute’s values to
bool, consider using the built-in ox.io._convert_bool_string function
to properly handle “True”/”False” string literals as True/False booleans:
ox.load_graphml(fp, node_dtypes={my_attr: ox.io._convert_bool_string}).

If you manually configured the all_oneway=True setting, you may need to
manually specify here that edge oneway attributes should be type str.

Note that you must pass one and only one of filepath or graphml_str.
If passing graphml_str, you may need to decode the bytes read from your
file before converting to string to pass to this function.

	Parameters:

	
	filepath (str | Path | None) – Path to the GraphML file.

	graphml_str (str | None) – Valid and decoded string representation of a GraphML file’s contents.

	node_dtypes (dict[str, Any] | None) – Dict of node attribute names:types to convert values’ data types. The
type can be a type or a custom string converter function.

	edge_dtypes (dict[str, Any] | None) – Dict of edge attribute names:types to convert values’ data types. The
type can be a type or a custom string converter function.

	graph_dtypes (dict[str, Any] | None) – Dict of graph-level attribute names:types to convert values’ data
types. The type can be a type or a custom string converter function.

	Returns:

	MultiDiGraph – G

	Return type:

	networkx.MultiDiGraph

	
osmnx.io.save_graph_geopackage(G, filepath=None, *, directed=False, encoding='utf-8')

	Save graph nodes and edges to disk as layers in a GeoPackage file.

	Parameters:

	
	G (MultiDiGraph) – The graph to save.

	filepath (str | Path | None) – Path to the GeoPackage file including extension. If None, use default
settings.data_folder/graph.gpkg.

	directed (bool) – If False, save one edge for each undirected edge in the graph but
retain original oneway and to/from information as edge attributes. If
True, save one edge for each directed edge in the graph.

	encoding (str) – The character encoding of the saved GeoPackage file.

	Returns:

	None – None

	Return type:

	None

	
osmnx.io.save_graph_xml(G, filepath=None, *, way_tag_aggs=None, encoding='utf-8')

	Save graph to disk as an OSM XML file.

This function exists only to allow serialization to the OSM XML format
for applications that require it, and has constraints to conform to that.
As such, it has a limited use case which does not include saving/loading
graphs for subsequent OSMnx analysis. To save/load graphs to/from disk for
later use in OSMnx, use the io.save_graphml and io.load_graphml
functions instead. To load a graph from an OSM XML file that you have
downloaded or generated elsewhere, use the graph.graph_from_xml
function.

Use the settings module’s useful_tags_node and useful_tags_way
settings to configure which tags your graph is created and saved with.
This function merges graph edges such that each OSM way has one entry in
the XML output, with the way’s nodes topologically sorted. G must be
unsimplified to save as OSM XML: otherwise, one edge could comprise
multiple OSM ways, making it impossible to group and sort edges in way.
G should also have been created with ox.settings.all_oneway=True for
this function to behave properly.

	Parameters:

	
	G (MultiDiGraph) – Unsimplified, unprojected graph to save as an OSM XML file.

	filepath (str | Path | None) – Path to the saved file including extension. If None, use default
settings.data_folder/graph.osm.

	way_tag_aggs (dict[str, Any] | None) – Keys are OSM way tag keys and values are aggregation functions
(anything accepted as an argument by pandas.agg). Allows user to
aggregate graph edge attribute values into single OSM way values. If
None, or if some tag’s key does not exist in the dict, the way
attribute will be assigned the value of the first edge of the way.

	encoding (str) – The character encoding of the saved OSM XML file.

	Returns:

	None – None

	Return type:

	None

	
osmnx.io.save_graphml(G, filepath=None, *, gephi=False, encoding='utf-8')

	Save graph to disk as GraphML file.

	Parameters:

	
	G (MultiDiGraph) – The graph to save as.

	filepath (str | Path | None) – Path to the GraphML file including extension. If None, use default
settings.data_folder/graph.graphml.

	gephi (bool) – If True, give each edge a unique key/id for compatibility with Gephi’s
interpretation of the GraphML specification.

	encoding (str) – The character encoding of the saved GraphML file.

	Returns:

	None – None

	Return type:

	None

osmnx.plot module

Visualize street networks, routes, orientations, and geospatial features.

	
osmnx.plot.get_colors(n, *, cmap='viridis', start=0, stop=1, alpha=None)

	Return n evenly-spaced colors from a matplotlib colormap.

	Parameters:

	
	n (int) – How many colors to generate.

	cmap (str) – Name of the matplotlib colormap from which to choose the colors.

	start (float) – Where to start in the colorspace (from 0 to 1).

	stop (float) – Where to end in the colorspace (from 0 to 1).

	alpha (float | None) – If None, return colors as HTML-like hex triplet “#rrggbb” RGB
strings. If float, return as “#rrggbbaa” RGBa strings.

	Returns:

	list[str] – color_list

	Return type:

	list[str]

	
osmnx.plot.get_edge_colors_by_attr(G, attr, *, num_bins=None, cmap='viridis', start=0, stop=1, na_color='none', equal_size=False)

	Return colors based on edges’ numerical attribute values.

	Parameters:

	
	G (MultiDiGraph) – Input graph.

	attr (str) – Name of a node attribute with numerical values.

	num_bins (int | None) – If None, linearly map a color to each value. Otherwise, assign values
to this many bins then assign a color to each bin.

	cmap (str) – Name of the matplotlib colormap from which to choose the colors.

	start (float) – Where to start in the colorspace (from 0 to 1).

	stop (float) – Where to end in the colorspace (from 0 to 1).

	na_color (str) – The color to assign to nodes with missing attr values.

	equal_size (bool) – Ignored if num_bins is None. If True, bin into equal-sized quantiles
(requires unique bin edges). If False, bin into equal-spaced bins.

	Returns:

	edge_colors – Labels are (u, v, k) edge IDs, values are colors as hex strings.

	Return type:

	pandas.Series

	
osmnx.plot.get_node_colors_by_attr(G, attr, *, num_bins=None, cmap='viridis', start=0, stop=1, na_color='none', equal_size=False)

	Return colors based on nodes’ numerical attribute values.

	Parameters:

	
	G (MultiDiGraph) – Input graph.

	attr (str) – Name of a node attribute with numerical values.

	num_bins (int | None) – If None, linearly map a color to each value. Otherwise, assign values
to this many bins then assign a color to each bin.

	cmap (str) – Name of the matplotlib colormap from which to choose the colors.

	start (float) – Where to start in the colorspace (from 0 to 1).

	stop (float) – Where to end in the colorspace (from 0 to 1).

	na_color (str) – The color to assign to nodes with missing attr values.

	equal_size (bool) – Ignored if num_bins is None. If True, bin into equal-sized quantiles
(requires unique bin edges). If False, bin into equal-spaced bins.

	Returns:

	node_colors – Labels are node IDs, values are colors as hex strings.

	Return type:

	pandas.Series

	
osmnx.plot.plot_figure_ground(G, *, dist=805, street_widths=None, default_width=4, color='w', **pg_kwargs)

	Plot a figure-ground diagram of a street network.

	Parameters:

	
	G (MultiDiGraph) – An unprojected graph.

	dist (float) – How many meters to extend plot’s bounding box north, south, east, and
west from the graph’s center point. Default corresponds to a square
mile bounding box.

	street_widths (dict[str, float] | None) – Dict keys are street types (ie, OSM “highway” tags) and values are the
widths to plot them, in pixels.

	default_width (float) – Fallback width, in pixels, for any street type not in street_widths.

	color (str) – The color of the streets.

	pg_kwargs (Any) – Keyword arguments to pass to plot_graph.

	Returns:

	tuple[Figure, Axes] – fig, ax

	Return type:

	tuple[matplotlib.figure.Figure, matplotlib.axes._axes.Axes]

	
osmnx.plot.plot_footprints(gdf, *, ax=None, figsize=(8, 8), color='orange', edge_color='none', edge_linewidth=0, alpha=None, bgcolor='#111111', bbox=None, show=True, close=False, save=False, filepath=None, dpi=600)

	Visualize a GeoDataFrame of geospatial features’ footprints.

	Parameters:

	
	gdf (gpd.GeoDataFrame) – GeoDataFrame of footprints (i.e., Polygons and/or MultiPolygons).

	ax (Axes | None) – If not None, plot on this pre-existing axes instance.

	figsize (tuple[float, float]) – If ax is None, create new figure with size (width, height).

	color (str) – Color of the footprints.

	edge_color (str) – Color of the footprints’ edges.

	edge_linewidth (float) – Width of the footprints’ edges.

	alpha (float | None) – Opacity of the footprints’ edges.

	bgcolor (str) – Background color of the figure.

	bbox (tuple[float, float, float, float] | None) – Bounding box as (north, south, east, west). If None, calculate it
from the spatial extents of the geometries in gdf.

	show (bool) – If True, call pyplot.show() to show the figure.

	close (bool) – If True, call pyplot.close() to close the figure.

	save (bool) – If True, save the figure to disk at filepath.

	filepath (str | Path | None) – The path to the file if save is True. File format is determined from
the extension. If None, save at settings.imgs_folder/image.png.

	dpi (int) – The resolution of saved file if save is True.

	Returns:

	tuple[Figure, Axes] – fig, ax

	Return type:

	tuple[Figure, Axes]

	
osmnx.plot.plot_graph(G, *, ax=None, figsize=(8, 8), bgcolor='#111111', node_color='w', node_size=15, node_alpha=None, node_edgecolor='none', node_zorder=1, edge_color='#999999', edge_linewidth=1, edge_alpha=None, bbox=None, show=True, close=False, save=False, filepath=None, dpi=300)

	Visualize a graph.

	Parameters:

	
	G (nx.MultiGraph | nx.MultiDiGraph) – Input graph.

	ax (Axes | None) – If not None, plot on this pre-existing axes instance.

	figsize (tuple[float, float]) – If ax is None, create new figure with size (width, height).

	bgcolor (str) – Background color of the figure.

	node_color (str | Sequence[str]) – Color(s) of the nodes.

	node_size (float | Sequence[float]) – Size(s) of the nodes. If 0, then skip plotting the nodes.

	node_alpha (float | None) – Opacity of the nodes. If you passed RGBa values to node_color, set
node_alpha=None to use the alpha channel in node_color.

	node_edgecolor (str | Iterable[str]) – Color(s) of the nodes’ markers’ borders.

	node_zorder (int) – The zorder to plot nodes. Edges are always 1, so set node_zorder=0
to plot nodes beneath edges.

	edge_color (str | Iterable[str]) – Color(s) of the edges’ lines.

	edge_linewidth (float | Sequence[float]) – Width(s) of the edges’ lines. If 0, then skip plotting the edges.

	edge_alpha (float | None) – Opacity of the edges. If you passed RGBa values to edge_color, set
edge_alpha=None to use the alpha channel in edge_color.

	bbox (tuple[float, float, float, float] | None) – Bounding box as (north, south, east, west). If None, calculate it
from spatial extents of plotted geometries.

	show (bool) – If True, call pyplot.show() to show the figure.

	close (bool) – If True, call pyplot.close() to close the figure.

	save (bool) – If True, save the figure to disk at filepath.

	filepath (str | Path | None) – The path to the file if save is True. File format is determined from
the extension. If None, save at settings.imgs_folder/image.png.

	dpi (int) – The resolution of saved file if save is True.

	Returns:

	tuple[Figure, Axes] – fig, ax

	Return type:

	tuple[Figure, Axes]

	
osmnx.plot.plot_graph_route(G, route, *, route_color='r', route_linewidth=4, route_alpha=0.5, orig_dest_size=100, ax=None, **pg_kwargs)

	Visualize a path along a graph.

	Parameters:

	
	G (nx.MultiDiGraph) – Input graph.

	route (list[int]) – A path of node IDs.

	route_color (str) – The color of the route.

	route_linewidth (float) – Width of the route’s line.

	route_alpha (float) – Opacity of the route’s line.

	orig_dest_size (float) – Size of the origin and destination nodes.

	ax (Axes | None) – If not None, plot on this pre-existing axes instance.

	pg_kwargs (Any) – Keyword arguments to pass to plot_graph.

	Returns:

	tuple[Figure, Axes] – fig, ax

	Return type:

	tuple[Figure, Axes]

	
osmnx.plot.plot_graph_routes(G, routes, *, route_colors='r', route_linewidths=4, **pgr_kwargs)

	Visualize multiple paths along a graph.

	Parameters:

	
	G (MultiDiGraph) – Input graph.

	routes (Iterable[list[int]]) – Paths of node IDs.

	route_colors (str | Iterable[str]) – If string, the one color for all routes. Otherwise, the color for each
route.

	route_linewidths (float | Iterable[float]) – If float, the one linewidth for all routes. Otherwise, the linewidth
for each route.

	pgr_kwargs (Any) – Keyword arguments to pass to plot_graph_route.

	Returns:

	tuple[Figure, Axes] – fig, ax

	Return type:

	tuple[matplotlib.figure.Figure, matplotlib.axes._axes.Axes]

	
osmnx.plot.plot_orientation(G, *, num_bins=36, min_length=0, weight=None, ax=None, figsize=(5, 5), area=True, color='#003366', edgecolor='k', linewidth=0.5, alpha=0.7, title=None, title_y=1.05, title_font=None, xtick_font=None)

	Plot a polar histogram of a spatial network’s edge bearings.

Ignores self-loop edges as their bearings are undefined. If G is a
MultiGraph, all edge bearings will be bidirectional (ie, two reciprocal
bearings per undirected edge). If G is a MultiDiGraph, all edge bearings
will be directional (ie, one bearing per directed edge). See also the
bearings module.

For more info see: Boeing, G. 2019. “Urban Spatial Order: Street Network
Orientation, Configuration, and Entropy.” Applied Network Science, 4 (1),
67. https://doi.org/10.1007/s41109-019-0189-1

	Parameters:

	
	G (nx.MultiGraph | nx.MultiDiGraph) – Unprojected graph with bearing attributes on each edge.

	num_bins (int) – Number of bins. For example, if num_bins=36 is provided, then each
bin will represent 10 degrees around the compass.

	min_length (float) – Ignore edges with “length” attribute values less than min_length.

	weight (str | None) – If not None, weight the edges’ bearings by this (non-null) edge
attribute.

	ax (PolarAxes | None) – If not None, plot on this pre-existing axes instance (must have
projection=polar).

	figsize (tuple[float, float]) – If ax is None, create new figure with size (width, height).

	area (bool) – If True, set bar length so area is proportional to frequency.
Otherwise, set bar length so height is proportional to frequency.

	color (str) – Color of the histogram bars.

	edgecolor (str) – Color of the histogram bar edges.

	linewidth (float) – Width of the histogram bar edges.

	alpha (float) – Opacity of the histogram bars.

	title (str | None) – The figure’s title.

	title_y (float) – The y position to place title.

	title_font (dict[str, Any] | None) – The title’s fontdict to pass to matplotlib.

	xtick_font (dict[str, Any] | None) – The xtick labels’ fontdict to pass to matplotlib.

	Returns:

	tuple[Figure, PolarAxes] – fig, ax

	Return type:

	tuple[Figure, PolarAxes]

osmnx.projection module

Project a graph, GeoDataFrame, or geometry to a different CRS.

	
osmnx.projection.is_projected(crs)

	Determine if a coordinate reference system is projected or not.

	Parameters:

	crs (Any) – The identifier of the coordinate reference system. This can be
anything accepted by pyproj.CRS.from_user_input(), such as an
authority string or a WKT string.

	Returns:

	projected – True if crs is projected, otherwise False

	Return type:

	bool

	
osmnx.projection.project_gdf(gdf, *, to_crs=None, to_latlong=False)

	Project a GeoDataFrame from its current CRS to another.

If to_latlong is True, this projects the GeoDataFrame to the coordinate
reference system defined by settings.default_crs. Otherwise it projects
it to the CRS defined by to_crs. If to_crs is None, it projects it
to the CRS of an appropriate UTM zone given geometry’s bounds.

	Parameters:

	
	gdf (GeoDataFrame) – The GeoDataFrame to be projected.

	to_crs (Any | None) – If None, project to an appropriate UTM zone. Otherwise project to
this CRS.

	to_latlong (bool) – If True, project to settings.default_crs and ignore to_crs.

	Returns:

	gdf_proj – The projected GeoDataFrame.

	Return type:

	geopandas.GeoDataFrame

	
osmnx.projection.project_geometry(geometry, *, crs=None, to_crs=None, to_latlong=False)

	Project a Shapely geometry from its current CRS to another.

If to_latlong is True, this projects the geometry to the coordinate
reference system defined by settings.default_crs. Otherwise it projects
it to the CRS defined by to_crs. If to_crs is None, it projects it
to the CRS of an appropriate UTM zone given geometry’s bounds.

	Parameters:

	
	geometry (Geometry) – The geometry to be projected.

	crs (Any | None) – The initial CRS of geometry. If None, it will be set to
settings.default_crs.

	to_crs (Any | None) – If None, project to an appropriate UTM zone. Otherwise project to this
CRS.

	to_latlong (bool) – If True, project to settings.default_crs and ignore to_crs.

	Returns:

	geometry_proj, crs – The projected geometry and its new CRS.

	Return type:

	tuple[shapely.Geometry, Any]

	
osmnx.projection.project_graph(G, *, to_crs=None, to_latlong=False)

	Project a graph from its current CRS to another.

If to_latlong is True, this projects the graph to the coordinate
reference system defined by settings.default_crs. Otherwise it projects
it to the CRS defined by to_crs. If to_crs is None, it projects it
to the CRS of an appropriate UTM zone given geometry’s bounds.

	Parameters:

	
	G (MultiDiGraph) – The graph to be projected.

	to_crs (Any | None) – If None, project to an appropriate UTM zone. Otherwise project to
this CRS.

	to_latlong (bool) – If True, project to settings.default_crs and ignore to_crs.

	Returns:

	G_proj – The projected graph.

	Return type:

	networkx.MultiDiGraph

osmnx.routing module

Calculate edge speeds, travel times, and weighted shortest paths.

	
osmnx.routing.add_edge_speeds(G, *, hwy_speeds=None, fallback=None, agg=numpy.mean)

	Add edge speeds (km per hour) to graph as new speed_kph edge attributes.

By default, this imputes free-flow travel speeds for all edges via the
mean maxspeed value of the edges of each highway type. For highway types
in the graph that have no maxspeed value on any edge, it assigns the
mean of all maxspeed values in graph.

This default mean-imputation can obviously be imprecise, and the user can
override it by passing in hwy_speeds and/or fallback arguments that
correspond to local speed limit standards. The user can also specify a
different aggregation function (such as the median) to impute missing
values from the observed values.

If edge maxspeed attribute has “mph” in it, value will automatically be
converted from miles per hour to km per hour. Any other speed units should
be manually converted to km per hour prior to running this function,
otherwise there could be unexpected results. If “mph” does not appear in
the edge’s maxspeed attribute string, then function assumes kph, per OSM
guidelines: https://wiki.openstreetmap.org/wiki/Map_Features/Units

	Parameters:

	
	G (MultiDiGraph) – Input graph.

	hwy_speeds (dict[str, float] | None) – Dict keys are OSM highway types and values are typical speeds (km per
hour) to assign to edges of that highway type for any edges missing
speed data. Any edges with highway type not in hwy_speeds will be
assigned the mean pre-existing speed value of all edges of that
highway type.

	fallback (float | None) – Default speed value (km per hour) to assign to edges whose highway
type did not appear in hwy_speeds and had no pre-existing speed
attribute values on any edge.

	agg (Callable[[Any], Any]) – Aggregation function to impute missing values from observed values.
The default is numpy.mean, but you might also consider for example
numpy.median, numpy.nanmedian, or your own custom function.

	Returns:

	G – Graph with speed_kph attributes on all edges.

	Return type:

	networkx.MultiDiGraph

	
osmnx.routing.add_edge_travel_times(G)

	Add edge travel time (seconds) to graph as new travel_time edge attributes.

Calculates free-flow travel time along each edge, based on length and
speed_kph attributes. Note: run add_edge_speeds first to generate the
speed_kph attribute. All edges must have length and speed_kph
attributes and all their values must be non-null.

	Parameters:

	G (MultiDiGraph) – Input graph.

	Returns:

	G – Graph with travel_time attributes on all edges.

	Return type:

	networkx.MultiDiGraph

	
osmnx.routing.k_shortest_paths(G, orig, dest, k, *, weight='length')

	Solve k shortest paths from an origin node to a destination node.

Uses Yen’s algorithm. See also shortest_path to solve just the one
shortest path.

	Parameters:

	
	G (MultiDiGraph) – Input graph.

	orig (int) – Origin node ID.

	dest (int) – Destination node ID.

	k (int) – Number of shortest paths to solve.

	weight (str) – Edge attribute to minimize when solving shortest paths.

	Yields:

	path – The node IDs constituting the next-shortest path.

	Return type:

	Iterator[list[int]]

	
osmnx.routing.route_to_gdf(G, route, *, weight='length')

	Return a GeoDataFrame of the edges in a path, in order.

	Parameters:

	
	G (MultiDiGraph) – Input graph.

	route (list[int]) – Node IDs constituting the path.

	weight (str) – Attribute value to minimize when choosing between parallel edges.

	Returns:

	GeoDataFrame – gdf_edges

	Return type:

	geopandas.GeoDataFrame

	
osmnx.routing.shortest_path(G, orig, dest, *, weight='length', cpus=1)

	Solve shortest path from origin node(s) to destination node(s).

Uses Dijkstra’s algorithm. If orig and dest are single node IDs, this
will return a list of the nodes constituting the shortest path between
them. If orig and dest are lists of node IDs, this will return a list
of lists of the nodes constituting the shortest path between each
origin-destination pair. If a path cannot be solved, this will return None
for that path. You can parallelize solving multiple paths with the cpus
parameter, but be careful to not exceed your available RAM.

See also k_shortest_paths to solve multiple shortest paths between a
single origin and destination. For additional functionality or different
solver algorithms, use NetworkX directly.

	Parameters:

	
	G (MultiDiGraph) – Input graph,

	orig (int | Iterable[int]) – Origin node ID(s).

	dest (int | Iterable[int]) – Destination node ID(s).

	weight (str) – Edge attribute to minimize when solving shortest path.

	cpus (int | None) – How many CPU cores to use. If None, use all available.

	Returns:

	path – The node IDs constituting the shortest path, or, if orig and dest
are both iterable, then a list of such paths.

	Return type:

	list[int] | None | list[list[int] | None]

osmnx.settings module

Global settings that can be configured by the user.

	all_onewaybool
	Only use if subsequently saving graph to an OSM XML file via the
save_graph_xml function. If True, forces all ways to be added as one-way
ways, preserving the original order of the nodes in the OSM way. This also
retains the original OSM way’s oneway tag’s string value as edge attribute
values, rather than converting them to True/False bool values. Default is
False.

	bidirectional_network_typeslist[str]
	Network types for which a fully bidirectional graph will be created.
Default is [“walk”].

	cache_folderstr | Path
	Path to folder to save/load HTTP response cache files, if the use_cache
setting is True. Default is “./cache”.

	cache_only_modebool
	If True, download network data from Overpass then raise a
CacheOnlyModeInterrupt error for user to catch. This prevents graph
building from taking place and instead just saves Overpass response to
cache. Useful for sequentially caching lots of raw data (as you can
only query Overpass one request at a time) then using the local cache to
quickly build many graphs simultaneously with multiprocessing. Default is
False.

	data_folderstr | Path
	Path to folder to save/load graph files by default. Default is “./data”.

	default_accessstr
	Filter for the OSM “access” tag. Default is ‘[“access”!~”private”]’.
Note that also filtering out “access=no” ways prevents including
transit-only bridges (e.g., Tilikum Crossing) from appearing in drivable
road network (e.g., ‘[“access”!~”private|no”]’). However, some drivable
tollroads have “access=no” plus a “access:conditional” tag to clarify when
it is accessible, so we can’t filter out all “access=no” ways by default.
Best to be permissive here then remove complicated combinations of tags
programatically after the full graph is downloaded and constructed.

	default_crsstr
	Default coordinate reference system to set when creating graphs. Default
is “epsg:4326”.

	doh_url_templatestr | None
	Endpoint to resolve DNS-over-HTTPS if local DNS resolution fails. Set to
None to disable DoH, but see downloader._config_dns documentation for
caveats. Default is: “https://8.8.8.8/resolve?name={hostname}”

	elevation_url_templatestr
	Endpoint of the Google Maps Elevation API (or equivalent), containing
exactly two parameters: locations and key. Default is:
“https://maps.googleapis.com/maps/api/elevation/json?locations={locations}&key={key}”
One example of an alternative equivalent would be Open Topo Data:
“https://api.opentopodata.org/v1/aster30m?locations={locations}&key={key}”

	http_accept_languagestr
	HTTP header accept-language. Default is “en”. Note that Nominatim’s
default language is “en” and it may sort its results’ importance scores
differently if a different language is specified.

	http_refererstr
	HTTP header referer. Default is
“OSMnx Python package (https://github.com/gboeing/osmnx)”.

	http_user_agentstr
	HTTP header user-agent. Default is
“OSMnx Python package (https://github.com/gboeing/osmnx)”.

	imgs_folderstr | Path
	Path to folder in which to save plotted images by default. Default is
“./images”.

	log_filebool
	If True, save log output to a file in logs_folder. Default is False.

	log_filenamestr
	Name of the log file, without file extension. Default is “osmnx”.

	log_consolebool
	If True, print log output to the console (terminal window). Default is
False.

	log_levelint
	One of Python’s logger.level constants. Default is logging.INFO.

	log_namestr
	Name of the logger. Default is “OSMnx”.

	logs_folderstr | Path
	Path to folder in which to save log files. Default is “./logs”.

	max_query_area_sizefloat
	Maximum area for any part of the geometry in meters: any polygon bigger
than this will get divided up for multiple queries to the API. Default is
2500000000.

	nominatim_keystr | None
	Your Nominatim API key, if you are using an API instance that requires
one. Default is None.

	nominatim_urlstr
	The base API url to use for Nominatim queries. Default is
“https://nominatim.openstreetmap.org/”.

	overpass_memoryint | None
	Overpass server memory allocation size for the query, in bytes. If
None, server will choose its default allocation size. Use with caution.
Default is None.

	overpass_rate_limitbool
	If True, check the Overpass server status endpoint for how long to
pause before making request. Necessary if server uses slot management,
but can be set to False if you are running your own Overpass instance
without rate limiting. Default is True.

	overpass_settingsstr
	Settings string for Overpass queries. Default is
“[out:json][timeout:{timeout}]{maxsize}”. By default, the {timeout} and
{maxsize} values are set dynamically by OSMnx when used.
To query, for example, historical OSM data as of a certain date:
‘[out:json][timeout:90][date:”2019-10-28T19:20:00Z”]’. Use with caution.

	overpass_urlstr
	The base API url to use for Overpass queries. Default is
“https://overpass-api.de/api”.

	requests_kwargsdict[str, Any]
	Optional keyword args to pass to the requests package when connecting
to APIs, for example to configure authentication or provide a path to
a local certificate file. More info on options such as auth, cert,
verify, and proxies can be found in the requests package advanced docs.
Default is {}.

	requests_timeoutint
	The timeout interval in seconds for HTTP requests, and (when applicable)
for Overpass server to use for executing the query. Default is 180.

	use_cachebool
	If True, cache HTTP responses locally in cache_folder instead of calling
API repeatedly for the same request. Default is True.

	useful_tags_nodelist[str]
	OSM “node” tags to add as graph node attributes, when present in the data
retrieved from OSM. Default is [“highway”, “junction”, “railway”, “ref”].

	useful_tags_waylist[str]
	OSM “way” tags to add as graph edge attributes, when present in the data
retrieved from OSM. Default is [“access”, “area”, “bridge”, “est_width”,
“highway”, “junction”, “landuse”, “lanes”, “maxspeed”, “name”, “oneway”,
“ref”, “service”, “tunnel”, “width”].

osmnx.simplification module

Simplify, correct, and consolidate spatial graph nodes and edges.

	
osmnx.simplification.consolidate_intersections(G, *, tolerance=10, rebuild_graph=True, dead_ends=False, reconnect_edges=True, node_attr_aggs=None)

	Consolidate intersections comprising clusters of nearby nodes.

Merges nearby nodes and returns either their centroids or a rebuilt graph
with consolidated intersections and reconnected edge geometries. The
tolerance argument can be a single value applied to all nodes or
individual per-node values. It should be adjusted to approximately match
street design standards in the specific street network, and you should use
a projected graph to work in meaningful and consistent units like meters.
Note: tolerance represents a per-node buffering radius. For example, to
consolidate nodes within 10 meters of each other, use tolerance=5.

When rebuild_graph is False, it uses a purely geometric (and relatively
fast) algorithm to identify “geometrically close” nodes, merge them, and
return the merged intersections’ centroids. When rebuild_graph is True,
it uses a topological (and slower but more accurate) algorithm to identify
“topologically close” nodes, merge them, then rebuild/return the graph.
Returned graph’s node IDs represent clusters rather than “osmid” values.
Refer to nodes’ “osmid_original” attributes for original “osmid” values.
If multiple nodes were merged together, the “osmid_original” attribute is
a list of merged nodes’ “osmid” values.

Divided roads are often represented by separate centerline edges. The
intersection of two divided roads thus creates 4 nodes, representing where
each edge intersects a perpendicular edge. These 4 nodes represent a
single intersection in the real world. A similar situation occurs with
roundabouts and traffic circles. This function consolidates nearby nodes
by buffering them to an arbitrary distance, merging overlapping buffers,
and taking their centroid.

	Parameters:

	
	G (nx.MultiDiGraph) – A projected graph.

	tolerance (float | dict[int, float]) – Nodes are buffered to this distance (in graph’s geometry’s units) and
subsequent overlaps are dissolved into a single node. If scalar, then
that single value will be used for all nodes. If dict (mapping node
IDs to individual values), then those values will be used per node and
any missing node IDs will not be buffered.

	rebuild_graph (bool) – If True, consolidate the nodes topologically, rebuild the graph, and
return as MultiDiGraph. Otherwise, consolidate the nodes geometrically
and return the consolidated node points as GeoSeries.

	dead_ends (bool) – If False, discard dead-end nodes to return only street-intersection
points.

	reconnect_edges (bool) – If True, reconnect edges (and their geometries) to the consolidated
nodes in rebuilt graph, and update the edge length attributes. If
False, the returned graph has no edges (which is faster if you just
need topologically consolidated intersection counts). Ignored if
rebuild_graph is not True.

	node_attr_aggs (dict[str, Any] | None) – Allows user to aggregate node attributes values when merging nodes.
Keys are node attribute names and values are aggregation functions
(anything accepted as an argument by pandas.agg). Node attributes
not in node_attr_aggs will contain the unique values across the
merged nodes. If None, defaults to {“elevation”: numpy.mean}.

	Returns:

	G or gs – If rebuild_graph=True, returns MultiDiGraph with consolidated
intersections and (optionally) reconnected edge geometries. If
rebuild_graph=False, returns GeoSeries of Points representing the
centroids of street intersections.

	Return type:

	nx.MultiDiGraph | gpd.GeoSeries

	
osmnx.simplification.simplify_graph(G, *, node_attrs_include=None, edge_attrs_differ=None, remove_rings=True, track_merged=False, edge_attr_aggs=None)

	Simplify a graph’s topology by removing interstitial nodes.

This simplifies the graph’s topology by removing all nodes that are not
intersections or dead-ends, by creating an edge directly between the end
points that encapsulate them while retaining the full geometry of the
original edges, saved as a new geometry attribute on the new edge.

Note that only simplified edges receive a geometry attribute. Some of
the resulting consolidated edges may comprise multiple OSM ways, and if
so, their unique attribute values are stored as a list. Optionally, the
simplified edges can receive a merged_edges attribute that contains a
list of all the (u, v) node pairs that were merged together.

Use the node_attrs_include or edge_attrs_differ parameters to relax
simplification strictness. For example, edge_attrs_differ=[“osmid”] will
retain every node whose incident edges have different OSM IDs. This lets
you keep nodes at elbow two-way intersections (but be aware that sometimes
individual blocks have multiple OSM IDs within them too). You could also
use this parameter to retain nodes where sidewalks or bike lanes begin/end
in the middle of a block. Or for example, node_attrs_include=[“highway”]
will retain every node with a “highway” attribute (regardless of its
value), even if it does not represent a street junction.

	Parameters:

	
	G (MultiDiGraph) – Input graph.

	node_attrs_include (Iterable[str] | None) – Node attribute names for relaxing the strictness of endpoint
determination. A node is always an endpoint if it possesses one or
more of the attributes in node_attrs_include.

	edge_attrs_differ (Iterable[str] | None) – Edge attribute names for relaxing the strictness of endpoint
determination. A node is always an endpoint if its incident edges have
different values than each other for any attribute in
edge_attrs_differ.

	remove_rings (bool) – If True, remove any graph components that consist only of a single
chordless cycle (i.e., an isolated self-contained ring).

	track_merged (bool) – If True, add merged_edges attribute on simplified edges, containing
a list of all the (u, v) node pairs that were merged together.

	edge_attr_aggs (dict[str, Any] | None) – Allows user to aggregate edge segment attributes when simplifying an
edge. Keys are edge attribute names and values are aggregation
functions to apply to these attributes when they exist for a set of
edges being merged. Edge attributes not in edge_attr_aggs will
contain the unique values across the merged edge segments. If None,
defaults to {“length”: sum, “travel_time”: sum}.

	Returns:

	G – Topologically simplified graph, with a new geometry attribute on
each simplified edge.

	Return type:

	networkx.MultiDiGraph

osmnx.stats module

Calculate geometric and topological network measures.

This module defines streets as the edges in an undirected representation of
the graph. Using undirected graph edges prevents double-counting bidirectional
edges of a two-way street, but may double-count a divided road’s separate
centerlines with different end point nodes. Due to OSMnx’s periphery cleaning
when the graph was created, you will get accurate node degrees (and in turn
streets-per-node counts) even at the periphery of the graph.

You can use NetworkX directly for additional topological network measures.

	
osmnx.stats.basic_stats(G, *, area=None, clean_int_tol=None)

	Calculate basic descriptive geometric and topological measures of a graph.

Density measures are only calculated if area is provided and clean
intersection measures are only calculated if clean_int_tol is provided.

	Parameters:

	
	G (MultiDiGraph) – Input graph.

	area (float | None) – If not None, calculate density measures and use area (in square
meters) as the denominator.

	clean_int_tol (float | None) – If not None, calculate consolidated intersections count (and density,
if area is also provided) and use this tolerance value. Refer to the
simplification.consolidate_intersections function documentation for
details.

	Returns:

	dict[str, Any] – stats –

	Dictionary containing the following keys:
	
	circuity_avg - see circuity_avg function documentation

	clean_intersection_count - see clean_intersection_count function documentation

	clean_intersection_density_km - clean_intersection_count per sq km

	edge_density_km - edge_length_total per sq km

	edge_length_avg - edge_length_total / m

	edge_length_total - see edge_length_total function documentation

	intersection_count - see intersection_count function documentation

	intersection_density_km - intersection_count per sq km

	k_avg - graph’s average node degree (in-degree and out-degree)

	m - count of edges in graph

	n - count of nodes in graph

	node_density_km - n per sq km

	self_loop_proportion - see self_loop_proportion function documentation

	street_density_km - street_length_total per sq km

	street_length_avg - street_length_total / street_segment_count

	street_length_total - see street_length_total function documentation

	street_segment_count - see street_segment_count function documentation

	streets_per_node_avg - see streets_per_node_avg function documentation

	streets_per_node_counts - see streets_per_node_counts function documentation

	streets_per_node_proportions - see streets_per_node_proportions function documentation

	Return type:

	dict[str, Any]

	
osmnx.stats.circuity_avg(Gu)

	Calculate average street circuity using edges of undirected graph.

Circuity is the sum of edge lengths divided by the sum of straight-line
distances between edge endpoints. Calculates straight-line distance as
euclidean distance if projected or great-circle distance if unprojected.
Returns None if the edge lengths sum to zero.

	Parameters:

	Gu (MultiGraph) – Undirected input graph.

	Returns:

	circuity_avg – The graph’s average undirected edge circuity.

	Return type:

	float | None

	
osmnx.stats.count_streets_per_node(G, *, nodes=None)

	Count how many physical street segments connect to each node in a graph.

This function uses an undirected representation of the graph and special
handling of self-loops to accurately count physical streets rather than
directed edges. Note: this function is automatically run by all the
graph.graph_from_x functions prior to truncating the graph to the
requested boundaries, to add accurate street_count attributes to each
node even if some of its neighbors are outside the requested graph
boundaries.

	Parameters:

	
	G (MultiDiGraph) – Input graph.

	nodes (Iterable[int] | None) – Which node IDs to get counts for. If None, use all graph nodes.
Otherwise calculate counts only for these node IDs.

	Returns:

	streets_per_node – Counts of how many physical streets connect to each node, with keys =
node ids and values = counts.

	Return type:

	dict[int, int]

	
osmnx.stats.edge_length_total(G)

	Calculate graph’s total edge length.

	Parameters:

	G (MultiGraph) – Input graph.

	Returns:

	length – Total length (meters) of edges in graph.

	Return type:

	float

	
osmnx.stats.intersection_count(G, *, min_streets=2)

	Count the intersections in a graph.

Intersections are defined as nodes with at least min_streets number of
streets incident on them.

	Parameters:

	
	G (MultiDiGraph) – Input graph.

	min_streets (int) – A node must have at least min_streets incident on them to count as
an intersection.

	Returns:

	count – Count of intersections in graph.

	Return type:

	int

	
osmnx.stats.self_loop_proportion(Gu)

	Calculate percent of edges that are self-loops in a graph.

A self-loop is defined as an edge from node u to node v where u==v.

	Parameters:

	Gu (MultiGraph) – Undirected input graph.

	Returns:

	proportion – Proportion of graph edges that are self-loops.

	Return type:

	float

	
osmnx.stats.street_length_total(Gu)

	Calculate graph’s total street segment length.

	Parameters:

	Gu (MultiGraph) – Undirected input graph.

	Returns:

	length – Total length (meters) of streets in graph.

	Return type:

	float

	
osmnx.stats.street_segment_count(Gu)

	Count the street segments in a graph.

	Parameters:

	Gu (MultiGraph) – Undirected input graph.

	Returns:

	count – Count of street segments in graph.

	Return type:

	int

	
osmnx.stats.streets_per_node(G)

	Retrieve nodes’ street_count attribute values.

See also the count_streets_per_node function for the calculation.

	Parameters:

	G (MultiDiGraph) – Input graph.

	Returns:

	spn – Dictionary with node ID keys and street count values.

	Return type:

	dict[int, int]

	
osmnx.stats.streets_per_node_avg(G)

	Calculate graph’s average count of streets per node.

	Parameters:

	G (MultiDiGraph) – Input graph.

	Returns:

	spna – Average count of streets per node.

	Return type:

	float

	
osmnx.stats.streets_per_node_counts(G)

	Calculate streets-per-node counts.

	Parameters:

	G (MultiDiGraph) – Input graph.

	Returns:

	spnc – Dictionary keyed by count of streets incident on each node, and with
values of how many nodes in the graph have this count.

	Return type:

	dict[int, int]

	
osmnx.stats.streets_per_node_proportions(G)

	Calculate streets-per-node proportions.

	Parameters:

	G (MultiDiGraph) – Input graph.

	Returns:

	spnp – Dictionary keyed by count of streets incident on each node, and with
values of what proportion of nodes in the graph have this count.

	Return type:

	dict[int, float]

osmnx.truncate module

Truncate graph by distance, bounding box, or polygon.

	
osmnx.truncate.largest_component(G, *, strongly=False)

	Return G’s largest weakly or strongly connected component as a graph.

	Parameters:

	
	G (MultiDiGraph) – Input graph.

	strongly (bool) – If True, return the largest strongly connected component. Otherwise
return the largest weakly connected component.

	Returns:

	G – The largest connected component subgraph of the original graph.

	Return type:

	networkx.MultiDiGraph

	
osmnx.truncate.truncate_graph_bbox(G, bbox, *, truncate_by_edge=False)

	Remove from a graph every node that falls outside a bounding box.

	Parameters:

	
	G (MultiDiGraph) – Input graph.

	bbox (tuple[float, float, float, float]) – Bounding box as (north, south, east, west).

	truncate_by_edge (bool) – If True, retain nodes outside bounding box if at least one of node’s
neighbors is within the bounding box.

	Returns:

	G – The truncated graph.

	Return type:

	networkx.MultiDiGraph

	
osmnx.truncate.truncate_graph_dist(G, source_node, dist, *, weight='length')

	Remove from a graph every node beyond some network distance from a node.

This function must calculate shortest path distances between source_node
and every other graph node, which can be slow on large graphs.

	Parameters:

	
	G (MultiDiGraph) – Input graph.

	source_node (int) – Node from which to measure network distances to all other nodes.

	dist (float) – Remove every node in the graph that is greater than dist distance
(in same units as weight attribute) along the network from
source_node.

	weight (str) – Graph edge attribute to use to measure distance.

	Returns:

	G – The truncated graph.

	Return type:

	networkx.MultiDiGraph

	
osmnx.truncate.truncate_graph_polygon(G, polygon, *, truncate_by_edge=False)

	Remove from a graph every node that falls outside a (Multi)Polygon.

	Parameters:

	
	G (nx.MultiDiGraph) – Input graph.

	polygon (Polygon | MultiPolygon) – Only retain nodes in graph that lie within this geometry.

	truncate_by_edge (bool) – If True, retain nodes outside boundary polygon if at least one of
node’s neighbors is within the polygon.

	Returns:

	G – The truncated graph.

	Return type:

	nx.MultiDiGraph

osmnx.utils module

General utility functions.

	
osmnx.utils.citation(style='bibtex')

	Print the OSMnx package’s citation information.

Boeing, G. (2024). Modeling and Analyzing Urban Networks and Amenities with
OSMnx. Working paper. https://geoffboeing.com/publications/osmnx-paper/

	Parameters:

	style (str) – {“apa”, “bibtex”, “ieee”}
The citation format, either APA or BibTeX or IEEE.

	Returns:

	None – None

	Return type:

	None

	
osmnx.utils.log(message, level=None, name=None, filename=None)

	Write a message to the logger.

This logs to file and/or prints to the console (terminal), depending on
the current configuration of settings.log_file and
settings.log_console.

	Parameters:

	
	message (str) – The message to log.

	level (int | None) – One of the Python logger.level constants. If None, set to
settings.log_level value.

	name (str | None) – The name of the logger. If None, set to settings.log_name value.

	filename (str | None) – The name of the log file, without file extension. If None, set to
settings.log_filename value.

	Returns:

	None – None

	Return type:

	None

	
osmnx.utils.ts(style='datetime', template=None)

	Return current local timestamp as a string.

	Parameters:

	
	style (str) – {“datetime”, “iso8601”, “date”, “time”}
Format the timestamp with this built-in style.

	template (str | None) – If not None, format the timestamp with this format string instead of
one of the built-in styles.

	Returns:

	str – timestamp

	Return type:

	str

osmnx.utils_geo module

Geospatial utility functions.

	
osmnx.utils_geo.bbox_from_point(point, dist, *, project_utm=False, return_crs=False)

	Create a bounding box around a (lat, lon) point.

Create a bounding box some distance (in meters) in each direction (north,
south, east, and west) from the center point and optionally project it.

	Parameters:

	
	point (tuple[float, float]) – The (lat, lon) center point to create the bounding box around.

	dist (float) – Bounding box distance in meters from the center point.

	project_utm (bool) – If True, return bounding box as UTM-projected coordinates.

	return_crs (bool) – If True, and project_utm is True, then return the projected CRS too.

	Returns:

	bbox or bbox, crs – (north, south, east, west) or ((north, south, east, west), crs).

	Return type:

	tuple[float, float, float, float] | tuple[tuple[float, float, float, float], Any]

	
osmnx.utils_geo.bbox_to_poly(bbox)

	Convert bounding box coordinates to Shapely Polygon.

	Parameters:

	bbox (tuple[float, float, float, float]) – Bounding box as (north, south, east, west).

	Returns:

	Polygon – polygon

	Return type:

	shapely.Polygon

	
osmnx.utils_geo.interpolate_points(geom, dist)

	Interpolate evenly spaced points along a LineString.

The spacing is approximate because the LineString’s length may not be
evenly divisible by it.

	Parameters:

	
	geom (LineString) – A LineString geometry.

	dist (float) – Spacing distance between interpolated points, in same units as geom.
Smaller values accordingly generate more points.

	Yields:

	point – Interpolated point’s (x, y) coordinates.

	Return type:

	Iterator[tuple[float, float]]

	
osmnx.utils_geo.sample_points(G, n)

	Randomly sample points constrained to a spatial graph.

This generates a graph-constrained uniform random sample of points. Unlike
typical spatially uniform random sampling, this method accounts for the
graph’s geometry. And unlike equal-length edge segmenting, this method
guarantees uniform randomness.

	Parameters:

	
	G (MultiGraph) – Graph from which to sample points. Should be undirected (to avoid
oversampling bidirectional edges) and projected (for accurate point
interpolation).

	n (int) – How many points to sample.

	Returns:

	point – The sampled points, multi-indexed by (u, v, key) of the edge from
which each point was sampled.

	Return type:

	geopandas.GeoSeries

Internals Reference

This is the complete OSMnx internals reference for developers, including private internal modules and functions. If you are instead looking for a user guide to OSMnx’s public API, see the User Reference.

osmnx.bearing module

Calculate graph edge bearings and orientation entropy.

	
osmnx.bearing._bearings_distribution(G, num_bins, min_length, weight)

	Compute distribution of bearings across evenly spaced bins.

Prevents bin-edge effects around common values like 0 degrees and 90
degrees by initially creating twice as many bins as desired, then merging
them in pairs. For example, if num_bins=36 is provided, then each bin
will represent 10 degrees around the compass, with the first bin
representing 355 degrees to 5 degrees.

	Parameters:

	
	G (nx.MultiGraph | nx.MultiDiGraph) – Unprojected graph with bearing attributes on each edge.

	num_bins (int) – Number of bins for the bearing histogram.

	min_length (float) – Ignore edges with length attributes less than min_length. Useful
to ignore the noise of many very short edges.

	weight (str | None) – If None, apply equal weight for each bearing. Otherwise, weight edges’
bearings by this (non-null) edge attribute. For example, if “length”
is provided, each edge’s bearing observation will be weighted by its
“length” attribute value.

	Returns:

	bin_counts, bin_centers – Counts of bearings per bin and the bins’ centers in degrees. Both
arrays are of length num_bins.

	Return type:

	tuple[npt.NDArray[np.float64], npt.NDArray[np.float64]]

	
osmnx.bearing._extract_edge_bearings(G, min_length, weight)

	Extract graph’s edge bearings.

Ignores self-loop edges as their bearings are undefined. If G is a
MultiGraph, all edge bearings will be bidirectional (ie, two reciprocal
bearings per undirected edge). If G is a MultiDiGraph, all edge bearings
will be directional (ie, one bearing per directed edge). For example, if
an undirected edge has a bearing of 90 degrees then we will record
bearings of both 90 degrees and 270 degrees for this edge.

	Parameters:

	
	G (nx.MultiGraph | nx.MultiDiGraph) – Unprojected graph with bearing attributes on each edge.

	min_length (float) – Ignore edges with length attributes less than min_length. Useful
to ignore the noise of many very short edges.

	weight (str | None) – If None, apply equal weight for each bearing. Otherwise, weight edges’
bearings by this (non-null) edge attribute. For example, if “length”
is provided, each edge’s bearing observation will be weighted by its
“length” attribute value.

	Returns:

	bearings, weights – The edge bearings of G and their corresponding weights.

	Return type:

	tuple[npt.NDArray[np.float64], npt.NDArray[np.float64]]

	
osmnx.bearing.add_edge_bearings(G)

	Calculate and add compass bearing attributes to all graph edges.

Vectorized function to calculate (initial) bearing from origin node to
destination node for each edge in a directed, unprojected graph then add
these bearings as new bearing edge attributes. Bearing represents angle
in degrees (clockwise) between north and the geodesic line from the origin
node to the destination node. Ignores self-loop edges as their bearings
are undefined.

	Parameters:

	G (MultiDiGraph) – Unprojected graph.

	Returns:

	G – Graph with bearing attributes on the edges.

	Return type:

	networkx.MultiDiGraph

	
osmnx.bearing.calculate_bearing(lat1, lon1, lat2, lon2)

	Calculate the compass bearing(s) between pairs of lat-lon points.

Vectorized function to calculate initial bearings between two points’
coordinates or between arrays of points’ coordinates. Expects coordinates
in decimal degrees. The bearing represents the clockwise angle in degrees
between north and the geodesic line from (lat1, lon1) to (lat2, lon2).

	Parameters:

	
	lat1 (float | npt.NDArray[np.float64]) – First point’s latitude coordinate(s).

	lon1 (float | npt.NDArray[np.float64]) – First point’s longitude coordinate(s).

	lat2 (float | npt.NDArray[np.float64]) – Second point’s latitude coordinate(s).

	lon2 (float | npt.NDArray[np.float64]) – Second point’s longitude coordinate(s).

	Returns:

	bearing – The bearing(s) in decimal degrees.

	Return type:

	float | npt.NDArray[np.float64]

	
osmnx.bearing.orientation_entropy(G, *, num_bins=36, min_length=0, weight=None)

	Calculate graph’s orientation entropy.

Orientation entropy is the Shannon entropy of the graphs’ edges’ bearings
across evenly spaced bins. Ignores self-loop edges as their bearings are
undefined. If G is a MultiGraph, all edge bearings will be bidirectional
(ie, two reciprocal bearings per undirected edge). If G is a
MultiDiGraph, all edge bearings will be directional (ie, one bearing per
directed edge).

For more info see: Boeing, G. 2019. “Urban Spatial Order: Street Network
Orientation, Configuration, and Entropy.” Applied Network Science, 4 (1),
67. https://doi.org/10.1007/s41109-019-0189-1

	Parameters:

	
	G (nx.MultiGraph | nx.MultiDiGraph) – Unprojected graph with bearing attributes on each edge.

	num_bins (int) – Number of bins. For example, if num_bins=36 is provided, then each
bin will represent 10 degrees around the compass.

	min_length (float) – Ignore edges with “length” attributes less than min_length. Useful
to ignore the noise of many very short edges.

	weight (str | None) – If None, apply equal weight for each bearing. Otherwise, weight edges’
bearings by this (non-null) edge attribute. For example, if “length”
is provided, each edge’s bearing observation will be weighted by its
“length” attribute value.

	Returns:

	entropy – The orientation entropy of G.

	Return type:

	float

osmnx.convert module

Convert spatial graphs to/from different data types.

	
osmnx.convert._is_duplicate_edge(data1, data2)

	Check if two graph edge data dicts have the same osmid and geometry.

	Parameters:

	
	data1 (dict[str, Any]) – The first edge’s attribute data.

	data2 (dict[str, Any]) – The second edge’s attribute data.

	Returns:

	bool – is_dupe

	Return type:

	bool

	
osmnx.convert._is_same_geometry(ls1, ls2)

	Determine if two LineString geometries are the same (in either direction).

Check both the normal and reversed orders of their constituent points.

	Parameters:

	
	ls1 (LineString) – The first LineString geometry.

	ls2 (LineString) – The second LineString geometry.

	Returns:

	bool – is_same

	Return type:

	bool

	
osmnx.convert._update_edge_keys(G)

	Increment key of one edge of parallel edges that differ in geometry.

For example, two streets from u to v that bow away from each other as
separate streets, rather than opposite direction edges of a single street.
Increment one of these edge’s keys so that they do not match across
(u, v, k) or (v, u, k) so we can add both to an undirected MultiGraph.

	Parameters:

	G (MultiDiGraph) – Input graph.

	Returns:

	MultiDiGraph – G

	Return type:

	networkx.MultiDiGraph

	
osmnx.convert.graph_from_gdfs(gdf_nodes, gdf_edges, *, graph_attrs=None)

	Convert node and edge GeoDataFrames to a MultiDiGraph.

This function is the inverse of graph_to_gdfs and is designed to work in
conjunction with it. However, you can convert arbitrary node and edge
GeoDataFrames as long as 1) gdf_nodes is uniquely indexed by osmid, 2)
gdf_nodes contains x and y coordinate columns representing node
geometries, 3) gdf_edges is uniquely multi-indexed by (u, v, key)
(following normal MultiDiGraph structure). This allows you to load any
node/edge Shapefiles or GeoPackage layers as GeoDataFrames then convert
them to a MultiDiGraph for network analysis.

Note that any geometry attribute on gdf_nodes is discarded, since x
and y provide the necessary node geometry information instead.

	Parameters:

	
	gdf_nodes (GeoDataFrame) – GeoDataFrame of graph nodes uniquely indexed by osmid.

	gdf_edges (GeoDataFrame) – GeoDataFrame of graph edges uniquely multi-indexed by (u, v, key).

	graph_attrs (dict[str, Any] | None) – The new G.graph attribute dictionary. If None, use gdf_edges’s CRS
as the only graph-level attribute (gdf_edges must have its crs
attribute set).

	Returns:

	MultiDiGraph – G

	Return type:

	networkx.MultiDiGraph

	
osmnx.convert.graph_to_gdfs(G, *, nodes=True, edges=True, node_geometry=True, fill_edge_geometry=True)

	Convert a MultiGraph or MultiDiGraph to node and/or edge GeoDataFrames.

This function is the inverse of graph_from_gdfs.

	Parameters:

	
	G (nx.MultiGraph | nx.MultiDiGraph) – Input graph.

	nodes (bool) – If True, convert graph nodes to a GeoDataFrame and return it.

	edges (bool) – If True, convert graph edges to a GeoDataFrame and return it.

	node_geometry (bool) – If True, create a geometry column from node “x” and “y” attributes.

	fill_edge_geometry (bool) – If True, fill missing edge geometry fields using endpoint nodes’
coordinates to create a LineString.

	Returns:

	gdf_nodes or gdf_edges or (gdf_nodes, gdf_edges) – gdf_nodes is indexed by osmid and gdf_edges is multi-indexed by
(u, v, key) following normal MultiGraph/MultiDiGraph structure.

	Return type:

	gpd.GeoDataFrame | tuple[gpd.GeoDataFrame, gpd.GeoDataFrame]

	
osmnx.convert.to_digraph(G, *, weight='length')

	Convert MultiDiGraph to DiGraph.

Chooses between parallel edges by minimizing weight attribute value. See
also to_undirected to convert MultiDiGraph to MultiGraph.

	Parameters:

	
	G (MultiDiGraph) – Input graph.

	weight (str) – Attribute value to minimize when choosing between parallel edges.

	Returns:

	DiGraph – G

	Return type:

	networkx.DiGraph

	
osmnx.convert.to_undirected(G)

	Convert MultiDiGraph to undirected MultiGraph.

Maintains parallel edges only if their geometries differ. See also
to_digraph to convert MultiDiGraph to DiGraph.

	Parameters:

	G (MultiDiGraph) – Input graph.

	Returns:

	MultiGraph – Gu

	Return type:

	networkx.MultiGraph

osmnx.distance module

Calculate distances and find nearest graph node/edge(s) to point(s).

	
osmnx.distance.add_edge_lengths(G, *, edges=None)

	Calculate and add length attribute (in meters) to each edge.

Vectorized function to calculate great-circle distance between each edge’s
incident nodes. Ensure graph is unprojected and unsimplified to calculate
accurate distances.

Note: this function is run by all the graph.graph_from_x functions
automatically to add length attributes to all edges. It calculates edge
lengths as the great-circle distance from node u to node v. When
OSMnx automatically runs this function upon graph creation, it does it
before simplifying the graph: thus it calculates the straight-line lengths
of edge segments that are themselves all straight. Only after
simplification do edges take on (potentially) curvilinear geometry. If you
wish to calculate edge lengths later, note that you will be calculating
straight-line distances which necessarily ignore the curvilinear geometry.
Thus you only want to run this function on a graph with all straight edges
(such as is the case with an unsimplified graph).

	Parameters:

	
	G (MultiDiGraph) – Unprojected and unsimplified input graph.

	edges (Iterable[tuple[int, int, int]] | None) – The subset of edges to add length attributes to, as (u, v, k)
tuples. If None, add lengths to all edges.

	Returns:

	G – Graph with length attributes on the edges.

	Return type:

	networkx.MultiDiGraph

	
osmnx.distance.euclidean(y1, x1, y2, x2)

	Calculate Euclidean distances between pairs of points.

Vectorized function to calculate the Euclidean distance between two
points’ coordinates or between arrays of points’ coordinates. For accurate
results, use projected coordinates rather than decimal degrees.

	Parameters:

	
	y1 (float | npt.NDArray[np.float64]) – First point’s y coordinate(s).

	x1 (float | npt.NDArray[np.float64]) – First point’s x coordinate(s).

	y2 (float | npt.NDArray[np.float64]) – Second point’s y coordinate(s).

	x2 (float | npt.NDArray[np.float64]) – Second point’s x coordinate(s).

	Returns:

	dist – Distance from each (x1, y1) point to each (x2, y2) point in same
units as the points’ coordinates.

	Return type:

	float | npt.NDArray[np.float64]

	
osmnx.distance.great_circle(lat1, lon1, lat2, lon2, earth_radius=6371009)

	Calculate great-circle distances between pairs of points.

Vectorized function to calculate the great-circle distance between two
points’ coordinates or between arrays of points’ coordinates using the
haversine formula. Expects coordinates in decimal degrees.

	Parameters:

	
	lat1 (float | npt.NDArray[np.float64]) – First point’s latitude coordinate(s).

	lon1 (float | npt.NDArray[np.float64]) – First point’s longitude coordinate(s).

	lat2 (float | npt.NDArray[np.float64]) – Second point’s latitude coordinate(s).

	lon2 (float | npt.NDArray[np.float64]) – Second point’s longitude coordinate(s).

	earth_radius (float) – Earth’s radius in units in which distance will be returned (default
represents meters).

	Returns:

	dist – Distance from each (lat1, lon1) point to each (lat2, lon2) point
in units of earth_radius.

	Return type:

	float | npt.NDArray[np.float64]

	
osmnx.distance.nearest_edges(G, X, Y, *, return_dist=False)

	Find the nearest edge to a point or to each of several points.

If X and Y are single coordinate values, this will return the nearest
edge to that point. If X and Y are iterables of coordinate values,
this will return the nearest edge to each point. This uses an R-tree
spatial index and minimizes the Euclidean distance from each point to the
possible matches. For accurate results, use a projected graph and points.

	Parameters:

	
	G (nx.MultiDiGraph) – Graph in which to find nearest edges.

	X (float | Iterable[float]) – The points’ x (longitude) coordinates, in same CRS/units as graph and
containing no nulls.

	Y (float | Iterable[float]) – The points’ y (latitude) coordinates, in same CRS/units as graph and
containing no nulls.

	return_dist (bool) – If True, optionally also return the distance(s) between point(s) and
nearest edge(s).

	Returns:

	ne or (ne, dist) – Nearest edge ID(s) as (u, v, k) tuples, or optionally a tuple of
ID(s) and distance(s) between each point and its nearest edge.

	Return type:

	tuple[int, int, int] | npt.NDArray[np.object_] | tuple[tuple[int, int, int], float] | tuple[npt.NDArray[np.object_], npt.NDArray[np.float64]]

	
osmnx.distance.nearest_nodes(G, X, Y, *, return_dist=False)

	Find the nearest node to a point or to each of several points.

If X and Y are single coordinate values, this will return the nearest
node to that point. If X and Y are iterables of coordinate values,
this will return the nearest node to each point.

If the graph is projected, this uses a k-d tree for Euclidean nearest
neighbor search, which requires that scipy is installed as an optional
dependency. If it is unprojected, this uses a ball tree for haversine
nearest neighbor search, which requires that scikit-learn is installed as
an optional dependency.

	Parameters:

	
	G (nx.MultiDiGraph) – Graph in which to find nearest nodes.

	X (float | Iterable[float]) – The points’ x (longitude) coordinates, in same CRS/units as graph and
containing no nulls.

	Y (float | Iterable[float]) – The points’ y (latitude) coordinates, in same CRS/units as graph and
containing no nulls.

	return_dist (bool) – If True, optionally also return the distance(s) between point(s) and
nearest node(s).

	Returns:

	nn or (nn, dist) – Nearest node ID(s) or optionally a tuple of ID(s) and distance(s)
between each point and its nearest node.

	Return type:

	int | npt.NDArray[np.int64] | tuple[int, float] | tuple[npt.NDArray[np.int64], npt.NDArray[np.float64]]

osmnx.elevation module

Add node elevations from raster files or web APIs, and calculate edge grades.

	
osmnx.elevation._elevation_request(url, pause)

	Send a HTTP GET request to a Google Maps-style Elevation API.

	Parameters:

	
	url (str) – URL of API endpoint, populated with request data.

	pause (float) – How long to pause in seconds before request.

	Returns:

	dict[str, Any] – response_json

	Return type:

	dict[str, Any]

	
osmnx.elevation._query_raster(nodes, filepath, band)

	Query a raster file for values at coordinates in DataFrame x/y columns.

	Parameters:

	
	nodes (DataFrame) – DataFrame indexed by node ID and with two columns representing x and y
coordinates.

	filepath (str | Path) – Path to the raster file or VRT to query.

	band (int) – Which raster band to query.

	Returns:

	nodes_values – Zip of node IDs and corresponding raster values.

	Return type:

	Iterable[tuple[int, Any]]

	
osmnx.elevation.add_edge_grades(G, *, add_absolute=True)

	Calculate and add grade attributes to all graph edges.

Vectorized function to calculate the directed grade (i.e., rise over run)
for each edge in the graph and add it to the edge as an attribute. Nodes
must already have elevation and length attributes before using this
function.

See also the add_node_elevations_raster and add_node_elevations_google
functions.

	Parameters:

	
	G (MultiDiGraph) – Graph with elevation node attributes.

	add_absolute (bool) – If True, also add absolute value of grade as grade_abs attribute.

	Returns:

	G – Graph with grade (and optionally grade_abs) attributes on the
edges.

	Return type:

	networkx.MultiDiGraph

	
osmnx.elevation.add_node_elevations_google(G, *, api_key=None, batch_size=512, pause=0)

	Add elevation (meters) attributes to all nodes using a web service.

By default, this uses the Google Maps Elevation API but you can optionally
use an equivalent API with the same interface and response format, such as
Open Topo Data, via the settings module’s elevation_url_template. The
Google Maps Elevation API requires an API key but other providers may not.
You can find more information about the Google Maps Elevation API at:
https://developers.google.com/maps/documentation/elevation

For a free local alternative see the add_node_elevations_raster
function. See also the add_edge_grades function.

	Parameters:

	
	G (MultiDiGraph) – Graph to add elevation data to.

	api_key (str | None) – A valid API key. Can be None if the API does not require a key.

	batch_size (int) – Max number of coordinate pairs to submit in each request (depends on
provider’s limits). Google’s limit is 512.

	pause (float) – How long to pause in seconds between API calls, which can be increased
if you get rate limited.

	Returns:

	G – Graph with elevation attributes on the nodes.

	Return type:

	networkx.MultiDiGraph

	
osmnx.elevation.add_node_elevations_raster(G, filepath, *, band=1, cpus=None)

	Add elevation attributes to all nodes from local raster file(s).

If filepath is an iterable of paths, this will generate a virtual raster
composed of the files at those paths as an intermediate step.

See also the add_edge_grades function.

	Parameters:

	
	G (MultiDiGraph) – Graph in same CRS as raster.

	filepath (str | Path | Iterable[str | Path]) – The path(s) to the raster file(s) to query.

	band (int) – Which raster band to query.

	cpus (int | None) – How many CPU cores to use. If None, use all available.

	Returns:

	G – Graph with elevation attributes on the nodes.

	Return type:

	networkx.MultiDiGraph

osmnx._errors module

Define custom errors and exceptions.

	
exception osmnx._errors.CacheOnlyInterruptError

	Exception for settings.cache_only_mode=True interruption.

	
exception osmnx._errors.GraphSimplificationError

	Exception for a problem with graph simplification.

	
exception osmnx._errors.InsufficientResponseError

	Exception for empty or too few results in server response.

	
exception osmnx._errors.ResponseStatusCodeError

	Exception for an unhandled server response status code.

osmnx.features module

Download and create GeoDataFrames from OpenStreetMap geospatial features.

Retrieve points of interest, building footprints, transit lines/stops, or any
other map features from OSM, including their geometries and attribute data,
then construct a GeoDataFrame of them. You can use this module to query for
nodes, ways, and relations (the latter of type “multipolygon” or “boundary”
only) by passing a dictionary of desired OSM tags.

For more details, see https://wiki.openstreetmap.org/wiki/Map_features and
https://wiki.openstreetmap.org/wiki/Elements

Refer to the Getting Started guide for usage limitations.

	
osmnx.features._build_relation_geometry(members, way_geoms)

	Build a relation’s geometry from its constituent member ways’ geometries.

OSM represents simple polygons as closed ways (see _build_way_geometry),
but it uses relations to represent multipolygons (with or without holes)
and polygons with holes. For the former, the relation contains multiple
members with role “outer”. For the latter, the relation contains at least
one member with role “outer” representing the shell(s), and at least one
member with role “inner” representing the hole(s). For documentation, see
https://wiki.openstreetmap.org/wiki/Relation:multipolygon

	Parameters:

	
	members (list[dict[str, Any]]) – The members constituting the relation.

	way_geoms (dict[int, LineString | Polygon]) – Keyed by OSM way ID with values of their geometries.

	Returns:

	Polygon | MultiPolygon – geometry

	Return type:

	Polygon | MultiPolygon

	
osmnx.features._build_way_geometry(way_id, way_nodes, way_tags, node_coords)

	Build a way’s geometry from its constituent nodes’ coordinates.

A way can be a LineString (open or closed way) or a Polygon (closed way)
but multi-geometries and polygons with holes are represented as relations.
See documentation: https://wiki.openstreetmap.org/wiki/Way#Types_of_way

	Parameters:

	
	way_id (int) – The way’s OSM ID.

	way_nodes (list[int]) – The way’s constituent nodes.

	way_tags (dict[str, Any]) – The way’s tags.

	node_coords (dict[int, tuple[float, float]]) – Keyed by OSM node ID with values of (lat, lon) coordinate tuples.

	Returns:

	LineString | Polygon – geometry

	Return type:

	LineString | Polygon

	
osmnx.features._create_gdf(response_jsons, polygon, tags)

	Convert Overpass API JSON responses to a GeoDataFrame of features.

	Parameters:

	
	response_jsons (Iterable[dict[str, Any]]) – Iterable of Overpass API JSON responses.

	polygon (Polygon | MultiPolygon) – Spatial boundaries to optionally filter the final GeoDataFrame.

	tags (dict[str, bool | str | list[str]]) – Query tags to optionally filter the final GeoDataFrame.

	Returns:

	gdf – GeoDataFrame of features with tags and geometry columns.

	Return type:

	gpd.GeoDataFrame

	
osmnx.features._filter_features(gdf, polygon, tags)

	Filter features GeoDataFrame by spatial boundaries and query tags.

If the polygon and tags arguments are empty objects, the final
GeoDataFrame will not be filtered accordingly.

	Parameters:

	
	gdf (gpd.GeoDataFrame) – Original GeoDataFrame of features.

	polygon (Polygon | MultiPolygon) – If not empty, the spatial boundaries to filter the GeoDataFrame.

	tags (dict[str, bool | str | list[str]]) – If not empty, the query tags to filter the GeoDataFrame.

	Returns:

	gdf – Filtered GeoDataFrame of features.

	Return type:

	gpd.GeoDataFrame

	
osmnx.features._process_features(elements, query_tag_keys)

	Convert node/way/relation elements into features with geometries.

	Parameters:

	
	elements (list[dict[str, Any]]) – The node/way/relation elements retrieved from the server.

	query_tag_keys (set[str]) – The keys of the tags used to query for matching features.

	Returns:

	list[dict[str, Any]] – features

	Return type:

	list[dict[str, Any]]

	
osmnx.features._remove_polygon_holes(outer_polygons, inner_polygons)

	Subtract inner holes from outer polygons.

This allows possible island polygons within a larger polygon’s holes.

	Parameters:

	
	outer_polygons (list[Polygon]) – Polygons, including possible islands within a larger polygon’s holes.

	inner_polygons (list[Polygon]) – Inner holes to subtract from the outer polygons that contain them.

	Returns:

	Polygon | MultiPolygon – geometry

	Return type:

	Polygon | MultiPolygon

	
osmnx.features.features_from_address(address, tags, dist)

	Download OSM features within some distance of an address.

You can use the settings module to retrieve a snapshot of historical OSM
data as of a certain date, or to configure the Overpass server timeout,
memory allocation, and other custom settings. This function searches for
features using tags. For more details, see:
https://wiki.openstreetmap.org/wiki/Map_features

	Parameters:

	
	address (str) – The address to geocode and use as the center point around which to
retrieve the features.

	tags (dict[str, bool | str | list[str]]) – Tags for finding elements in the selected area. Results are the union,
not intersection of the tags and each result matches at least one tag.
The keys are OSM tags (e.g., building, landuse, highway, etc)
and the values can be either True to retrieve all elements matching
the tag, or a string to retrieve a single tag:value combination, or a
list of strings to retrieve multiple values for the tag. For example,
tags = {‘building’: True} would return all buildings in the area.
Or, tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’],
‘highway’:’bus_stop’} would return all amenities, any landuse=retail,
any landuse=commercial, and any highway=bus_stop.

	dist (float) – Distance in meters from address to create a bounding box to query.

	Returns:

	GeoDataFrame – gdf

	Return type:

	geopandas.GeoDataFrame

	
osmnx.features.features_from_bbox(bbox, tags)

	Download OSM features within a lat-lon bounding box.

You can use the settings module to retrieve a snapshot of historical OSM
data as of a certain date, or to configure the Overpass server timeout,
memory allocation, and other custom settings. This function searches for
features using tags. For more details, see:
https://wiki.openstreetmap.org/wiki/Map_features

	Parameters:

	
	bbox (tuple[float, float, float, float]) – Bounding box as (north, south, east, west). Coordinates should be in
unprojected latitude-longitude degrees (EPSG:4326).

	tags (dict[str, bool | str | list[str]]) – Tags for finding elements in the selected area. Results are the union,
not intersection of the tags and each result matches at least one tag.
The keys are OSM tags (e.g., building, landuse, highway, etc)
and the values can be either True to retrieve all elements matching
the tag, or a string to retrieve a single tag:value combination, or a
list of strings to retrieve multiple values for the tag. For example,
tags = {‘building’: True} would return all buildings in the area.
Or, tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’],
‘highway’:’bus_stop’} would return all amenities, any landuse=retail,
any landuse=commercial, and any highway=bus_stop.

	Returns:

	GeoDataFrame – gdf

	Return type:

	geopandas.GeoDataFrame

	
osmnx.features.features_from_place(query, tags, *, which_result=None)

	Download OSM features within the boundaries of some place(s).

The query must be geocodable and OSM must have polygon boundaries for the
geocode result. If OSM does not have a polygon for this place, you can
instead get features within it using the features_from_address
function, which geocodes the place name to a point and gets the features
within some distance of that point.

If OSM does have polygon boundaries for this place but you’re not finding
it, try to vary the query string, pass in a structured query dict, or vary
the which_result argument to use a different geocode result. If you know
the OSM ID of the place, you can retrieve its boundary polygon using the
geocode_to_gdf function, then pass it to the features_from_polygon
function.

You can use the settings module to retrieve a snapshot of historical OSM
data as of a certain date, or to configure the Overpass server timeout,
memory allocation, and other custom settings. This function searches for
features using tags. For more details, see:
https://wiki.openstreetmap.org/wiki/Map_features

	Parameters:

	
	query (str | dict[str, str] | list[str | dict[str, str]]) – The query or queries to geocode to retrieve place boundary polygon(s).

	tags (dict[str, bool | str | list[str]]) – Tags for finding elements in the selected area. Results are the union,
not intersection of the tags and each result matches at least one tag.
The keys are OSM tags (e.g., building, landuse, highway, etc)
and the values can be either True to retrieve all elements matching
the tag, or a string to retrieve a single tag:value combination, or a
list of strings to retrieve multiple values for the tag. For example,
tags = {‘building’: True} would return all buildings in the area.
Or, tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’],
‘highway’:’bus_stop’} would return all amenities, any landuse=retail,
any landuse=commercial, and any highway=bus_stop.

	which_result (int | None | list[int | None]) – Which search result to return. If None, auto-select the first
(Multi)Polygon or raise an error if OSM doesn’t return one.

	Returns:

	GeoDataFrame – gdf

	Return type:

	geopandas.GeoDataFrame

	
osmnx.features.features_from_point(center_point, tags, dist)

	Download OSM features within some distance of a lat-lon point.

You can use the settings module to retrieve a snapshot of historical OSM
data as of a certain date, or to configure the Overpass server timeout,
memory allocation, and other custom settings. This function searches for
features using tags. For more details, see:
https://wiki.openstreetmap.org/wiki/Map_features

	Parameters:

	
	center_point (tuple[float, float]) – The (lat, lon) center point around which to retrieve the features.
Coordinates should be in unprojected latitude-longitude degrees
(EPSG:4326).

	tags (dict[str, bool | str | list[str]]) – Tags for finding elements in the selected area. Results are the union,
not intersection of the tags and each result matches at least one tag.
The keys are OSM tags (e.g., building, landuse, highway, etc)
and the values can be either True to retrieve all elements matching
the tag, or a string to retrieve a single tag:value combination, or a
list of strings to retrieve multiple values for the tag. For example,
tags = {‘building’: True} would return all buildings in the area.
Or, tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’],
‘highway’:’bus_stop’} would return all amenities, any landuse=retail,
any landuse=commercial, and any highway=bus_stop.

	dist (float) – Distance in meters from center_point to create a bounding box to
query.

	Returns:

	GeoDataFrame – gdf

	Return type:

	geopandas.GeoDataFrame

	
osmnx.features.features_from_polygon(polygon, tags)

	Download OSM features within the boundaries of a (Multi)Polygon.

You can use the settings module to retrieve a snapshot of historical OSM
data as of a certain date, or to configure the Overpass server timeout,
memory allocation, and other custom settings. This function searches for
features using tags. For more details, see:
https://wiki.openstreetmap.org/wiki/Map_features

	Parameters:

	
	polygon (Polygon | MultiPolygon) – The geometry within which to retrieve features. Coordinates should be
in unprojected latitude-longitude degrees (EPSG:4326).

	tags (dict[str, bool | str | list[str]]) – Tags for finding elements in the selected area. Results are the union,
not intersection of the tags and each result matches at least one tag.
The keys are OSM tags (e.g., building, landuse, highway, etc)
and the values can be either True to retrieve all elements matching
the tag, or a string to retrieve a single tag:value combination, or a
list of strings to retrieve multiple values for the tag. For example,
tags = {‘building’: True} would return all buildings in the area.
Or, tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’],
‘highway’:’bus_stop’} would return all amenities, any landuse=retail,
any landuse=commercial, and any highway=bus_stop.

	Returns:

	gpd.GeoDataFrame – gdf

	Return type:

	gpd.GeoDataFrame

	
osmnx.features.features_from_xml(filepath, *, polygon=None, tags=None, encoding='utf-8')

	Create a GeoDataFrame of OSM features from data in an OSM XML file.

Because this function creates a GeoDataFrame of features from an OSM XML
file that has already been downloaded (i.e., no query is made to the
Overpass API), the polygon and tags arguments are optional. If they
are None, filtering will be skipped.

	Parameters:

	
	filepath (str | Path) – Path to file containing OSM XML data.

	tags (dict[str, bool | str | list[str]] | None) – Query tags to optionally filter the final GeoDataFrame.

	polygon (Polygon | MultiPolygon | None) – Spatial boundaries to optionally filter the final GeoDataFrame.

	encoding (str) – The OSM XML file’s character encoding.

	Returns:

	gpd.GeoDataFrame – gdf

	Return type:

	gpd.GeoDataFrame

osmnx.geocoder module

Geocode place names or addresses or retrieve OSM elements by place name or ID.

This module uses the Nominatim API’s “search” and “lookup” endpoints. For more
details see https://wiki.openstreetmap.org/wiki/Elements and
https://nominatim.org/.

	
osmnx.geocoder._geocode_query_to_gdf(query, which_result, by_osmid)

	Geocode a single place query to a GeoDataFrame.

	Parameters:

	
	query (str | dict[str, str]) – Query string or structured dict to geocode.

	which_result (int | None) – Which search result to return. If None, auto-select the first
(Multi)Polygon or raise an error if OSM doesn’t return one. To get
the top match regardless of geometry type, set which_result=1.
Ignored if by_osmid=True.

	by_osmid (bool) – If True, treat query as an OSM ID lookup rather than text search.

	Returns:

	gdf – GeoDataFrame with one row containing the geocoding result.

	Return type:

	geopandas.GeoDataFrame

	
osmnx.geocoder._get_first_polygon(results)

	Choose first result of geometry type (Multi)Polygon from list of results.

	Parameters:

	results (list[dict[str, Any]]) – Results from the Nominatim API.

	Returns:

	result – The chosen result.

	Return type:

	dict[str, Any]

	
osmnx.geocoder.geocode(query)

	Geocode place names or addresses to (lat, lon) with the Nominatim API.

This geocodes the query via the Nominatim “search” endpoint.

	Parameters:

	query (str) – The query string to geocode.

	Returns:

	point – The (lat, lon) coordinates returned by the geocoder.

	Return type:

	tuple[float, float]

	
osmnx.geocoder.geocode_to_gdf(query, *, which_result=None, by_osmid=False)

	Retrieve OSM elements by place name or OSM ID with the Nominatim API.

If searching by place name, the query argument can be a string or
structured dict, or a list of such strings/dicts to send to the geocoder.
This uses the Nominatim “search” endpoint to geocode the place name to the
best-matching OSM element, then returns that element and its attribute
data.

You can instead query by OSM ID by passing by_osmid=True. This uses the
Nominatim “lookup” endpoint to retrieve the OSM element with that ID. In
this case, the function treats the query argument as an OSM ID (or list
of OSM IDs), which must be prepended with their types: node (N), way (W),
or relation (R) in accordance with the Nominatim API format. For example,
query=[“R2192363”, “N240109189”, “W427818536”].

If query is a list, then which_result must be either an int or a list
with the same length as query. The queries you provide must be
resolvable to elements in the Nominatim database. The resulting
GeoDataFrame’s geometry column contains place boundaries if they exist.

	Parameters:

	
	query (str | dict[str, str] | list[str | dict[str, str]]) – The query string(s) or structured dict(s) to geocode.

	which_result (int | None | list[int | None]) – Which search result to return. If None, auto-select the first
(Multi)Polygon or raise an error if OSM doesn’t return one. To get
the top match regardless of geometry type, set which_result=1.
Ignored if by_osmid=True.

	by_osmid (bool) – If True, treat query as an OSM ID lookup rather than text search.

	Returns:

	gdf – GeoDataFrame with one row for each query result.

	Return type:

	geopandas.GeoDataFrame

osmnx.graph module

Download and create graphs from OpenStreetMap data.

Refer to the Getting Started guide for usage limitations.

	
osmnx.graph._add_paths(G, paths, bidirectional)

	Add OSM paths to the graph as edges.

	Parameters:

	
	G (MultiDiGraph) – The graph to add paths to.

	paths (Iterable[dict[str, Any]]) – Iterable of paths’ tag:value attribute data dicts.

	bidirectional (bool) – If True, create bidirectional edges for one-way streets.

	Returns:

	None – None

	Return type:

	None

	
osmnx.graph._convert_node(element)

	Convert an OSM node element into the format for a NetworkX node.

	Parameters:

	element (dict[str, Any]) – OSM element of type “node”.

	Returns:

	dict[str, Any] – node

	Return type:

	dict[str, Any]

	
osmnx.graph._convert_path(element)

	Convert an OSM way element into the format for a NetworkX path.

	Parameters:

	element (dict[str, Any]) – OSM element of type “way”.

	Returns:

	dict[str, Any] – path

	Return type:

	dict[str, Any]

	
osmnx.graph._create_graph(response_jsons, bidirectional)

	Create a NetworkX MultiDiGraph from Overpass API responses.

Adds length attributes in meters (great-circle distance between endpoints)
to all of the graph’s (pre-simplified, straight-line) edges via the
distance.add_edge_lengths function.

	Parameters:

	
	response_jsons (Iterable[dict[str, Any]]) – Iterable of JSON responses from the Overpass API.

	retain_all – If True, return the entire graph even if it is not connected.
Otherwise, retain only the largest weakly connected component.

	bidirectional (bool) – If True, create bidirectional edges for one-way streets.

	Returns:

	MultiDiGraph – G

	Return type:

	networkx.MultiDiGraph

	
osmnx.graph._is_path_one_way(attrs, bidirectional, oneway_values)

	Determine if a path of nodes allows travel in only one direction.

	Parameters:

	
	attrs (dict[str, Any]) – A path’s tag:value attribute data.

	bidirectional (bool) – Whether this is a bidirectional network type.

	oneway_values (set[str]) – The values OSM uses in its “oneway” tag to denote True.

	Returns:

	bool – is_one_way

	Return type:

	bool

	
osmnx.graph._is_path_reversed(attrs, reversed_values)

	Determine if the order of nodes in a path should be reversed.

	Parameters:

	
	attrs (dict[str, Any]) – A path’s tag:value attribute data.

	reversed_values (set[str]) – The values OSM uses in its ‘oneway’ tag to denote travel can only
occur in the opposite direction of the node order.

	Returns:

	bool – is_reversed

	Return type:

	bool

	
osmnx.graph._parse_nodes_paths(response_json)

	Construct dicts of nodes and paths from an Overpass response.

	Parameters:

	response_json (dict[str, Any]) – JSON response from the Overpass API.

	Returns:

	nodes, paths – Each dict’s keys are OSM IDs and values are dicts of attributes.

	Return type:

	tuple[dict[int, dict[str, Any]], dict[int, dict[str, Any]]]

	
osmnx.graph.graph_from_address(address, dist, *, dist_type='bbox', network_type='all', simplify=True, retain_all=False, truncate_by_edge=False, custom_filter=None)

	Download and create a graph within some distance of an address.

This function uses filters to query the Overpass API: you can either
specify a pre-defined network_type or provide your own custom_filter
with Overpass QL.

Use the settings module’s useful_tags_node and useful_tags_way
settings to configure which OSM node/way tags are added as graph node/edge
attributes. You can also use the settings module to retrieve a snapshot
of historical OSM data as of a certain date, or to configure the Overpass
server timeout, memory allocation, and other custom settings.

	Parameters:

	
	address (str) – The address to geocode and use as the central point around which to
construct the graph.

	dist (float) – Retain only those nodes within this many meters of center_point,
measuring distance according to dist_type.

	dist_type (str) – {“network”, “bbox”}
If “bbox”, retain only those nodes within a bounding box of dist. If
“network”, retain only those nodes within dist network distance from
the centermost node.

	network_type (str) – {“all”, “all_public”, “bike”, “drive”, “drive_service”, “walk”}
What type of street network to retrieve if custom_filter is None.

	simplify (bool) – If True, simplify graph topology with the simplify_graph function.

	retain_all (bool) – If True, return the entire graph even if it is not connected. If
False, retain only the largest weakly connected component.

	truncate_by_edge (bool) – If True, retain nodes outside bounding box if at least one of node’s
neighbors is within the bounding box.

	custom_filter (str | None) – A custom ways filter to be used instead of the network_type presets,
e.g. ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass
in a network_type that is in settings.bidirectional_network_types
if you want the graph to be fully bidirectional.

	Returns:

	nx.MultiDiGraph | tuple[nx.MultiDiGraph, tuple[float, float]] – G or (G, (lat, lon))

	Return type:

	nx.MultiDiGraph | tuple[nx.MultiDiGraph, tuple[float, float]]

Notes

Very large query areas use the utils_geo._consolidate_subdivide_geometry
function to automatically make multiple requests: see that function’s
documentation for caveats.

	
osmnx.graph.graph_from_bbox(bbox, *, network_type='all', simplify=True, retain_all=False, truncate_by_edge=False, custom_filter=None)

	Download and create a graph within a lat-lon bounding box.

This function uses filters to query the Overpass API: you can either
specify a pre-defined network_type or provide your own custom_filter
with Overpass QL.

Use the settings module’s useful_tags_node and useful_tags_way
settings to configure which OSM node/way tags are added as graph node/edge
attributes. You can also use the settings module to retrieve a snapshot
of historical OSM data as of a certain date, or to configure the Overpass
server timeout, memory allocation, and other custom settings.

	Parameters:

	
	bbox (tuple[float, float, float, float]) – Bounding box as (north, south, east, west). Coordinates should be in
unprojected latitude-longitude degrees (EPSG:4326).

	network_type (str) – {“all”, “all_public”, “bike”, “drive”, “drive_service”, “walk”}
What type of street network to retrieve if custom_filter is None.

	simplify (bool) – If True, simplify graph topology via the simplify_graph function.

	retain_all (bool) – If True, return the entire graph even if it is not connected. If
False, retain only the largest weakly connected component.

	truncate_by_edge (bool) – If True, retain nodes outside bounding box if at least one of node’s
neighbors is within the bounding box.

	custom_filter (str | None) – A custom ways filter to be used instead of the network_type presets,
e.g. ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass
in a network_type that is in settings.bidirectional_network_types
if you want the graph to be fully bidirectional.

	Returns:

	MultiDiGraph – G

	Return type:

	networkx.MultiDiGraph

Notes

Very large query areas use the utils_geo._consolidate_subdivide_geometry
function to automatically make multiple requests: see that function’s
documentation for caveats.

	
osmnx.graph.graph_from_place(query, *, network_type='all', simplify=True, retain_all=False, truncate_by_edge=False, which_result=None, custom_filter=None)

	Download and create a graph within the boundaries of some place(s).

The query must be geocodable and OSM must have polygon boundaries for the
geocode result. If OSM does not have a polygon for this place, you can
instead get its street network using the graph_from_address function,
which geocodes the place name to a point and gets the network within some
distance of that point.

If OSM does have polygon boundaries for this place but you’re not finding
it, try to vary the query string, pass in a structured query dict, or vary
the which_result argument to use a different geocode result. If you know
the OSM ID of the place, you can retrieve its boundary polygon using the
geocode_to_gdf function, then pass it to the features_from_polygon
function.

This function uses filters to query the Overpass API: you can either
specify a pre-defined network_type or provide your own custom_filter
with Overpass QL.

Use the settings module’s useful_tags_node and useful_tags_way
settings to configure which OSM node/way tags are added as graph node/edge
attributes. You can also use the settings module to retrieve a snapshot
of historical OSM data as of a certain date, or to configure the Overpass
server timeout, memory allocation, and other custom settings.

	Parameters:

	
	query (str | dict[str, str] | list[str | dict[str, str]]) – The query or queries to geocode to retrieve place boundary polygon(s).

	network_type (str) – {“all”, “all_public”, “bike”, “drive”, “drive_service”, “walk”}
What type of street network to retrieve if custom_filter is None.

	simplify (bool) – If True, simplify graph topology with the simplify_graph function.

	retain_all (bool) – If True, return the entire graph even if it is not connected. If
False, retain only the largest weakly connected component.

	truncate_by_edge (bool) – If True, retain nodes outside bounding box if at least one of node’s
neighbors is within the bounding box.

	which_result (int | None | list[int | None]) – which geocoding result to use. if None, auto-select the first
(Multi)Polygon or raise an error if OSM doesn’t return one.

	custom_filter (str | None) – A custom ways filter to be used instead of the network_type presets,
e.g. ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass
in a network_type that is in settings.bidirectional_network_types
if you want the graph to be fully bidirectional.

	Returns:

	MultiDiGraph – G

	Return type:

	networkx.MultiDiGraph

Notes

Very large query areas use the utils_geo._consolidate_subdivide_geometry
function to automatically make multiple requests: see that function’s
documentation for caveats.

	
osmnx.graph.graph_from_point(center_point, dist, *, dist_type='bbox', network_type='all', simplify=True, retain_all=False, truncate_by_edge=False, custom_filter=None)

	Download and create a graph within some distance of a lat-lon point.

This function uses filters to query the Overpass API: you can either
specify a pre-defined network_type or provide your own custom_filter
with Overpass QL.

Use the settings module’s useful_tags_node and useful_tags_way
settings to configure which OSM node/way tags are added as graph node/edge
attributes. You can also use the settings module to retrieve a snapshot
of historical OSM data as of a certain date, or to configure the Overpass
server timeout, memory allocation, and other custom settings.

	Parameters:

	
	center_point (tuple[float, float]) – The (lat, lon) center point around which to construct the graph.
Coordinates should be in unprojected latitude-longitude degrees
(EPSG:4326).

	dist (float) – Retain only those nodes within this many meters of center_point,
measuring distance according to dist_type.

	dist_type (str) – {“bbox”, “network”}
If “bbox”, retain only those nodes within a bounding box of dist
length/width. If “network”, retain only those nodes within dist
network distance of the nearest node to center_point.

	network_type (str) – {“all”, “all_public”, “bike”, “drive”, “drive_service”, “walk”}
What type of street network to retrieve if custom_filter is None.

	simplify (bool) – If True, simplify graph topology with the simplify_graph function.

	retain_all (bool) – If True, return the entire graph even if it is not connected. If
False, retain only the largest weakly connected component.

	truncate_by_edge (bool) – If True, retain nodes outside bounding box if at least one of node’s
neighbors is within the bounding box.

	custom_filter (str | None) – A custom ways filter to be used instead of the network_type presets,
e.g. ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass
in a network_type that is in settings.bidirectional_network_types
if you want the graph to be fully bidirectional.

	Returns:

	MultiDiGraph – G

	Return type:

	networkx.MultiDiGraph

Notes

Very large query areas use the utils_geo._consolidate_subdivide_geometry
function to automatically make multiple requests: see that function’s
documentation for caveats.

	
osmnx.graph.graph_from_polygon(polygon, *, network_type='all', simplify=True, retain_all=False, truncate_by_edge=False, custom_filter=None)

	Download and create a graph within the boundaries of a (Multi)Polygon.

This function uses filters to query the Overpass API: you can either
specify a pre-defined network_type or provide your own custom_filter
with Overpass QL.

Use the settings module’s useful_tags_node and useful_tags_way
settings to configure which OSM node/way tags are added as graph node/edge
attributes. You can also use the settings module to retrieve a snapshot
of historical OSM data as of a certain date, or to configure the Overpass
server timeout, memory allocation, and other custom settings.

	Parameters:

	
	polygon (Polygon | MultiPolygon) – The geometry within which to construct the graph. Coordinates should
be in unprojected latitude-longitude degrees (EPSG:4326).

	network_type (str) – {“all”, “all_public”, “bike”, “drive”, “drive_service”, “walk”}
What type of street network to retrieve if custom_filter is None.

	simplify (bool) – If True, simplify graph topology with the simplify_graph function.

	retain_all (bool) – If True, return the entire graph even if it is not connected. If
False, retain only the largest weakly connected component.

	truncate_by_edge (bool) – If True, retain nodes outside bounding box if at least one of node’s
neighbors is within the bounding box.

	custom_filter (str | None) – A custom ways filter to be used instead of the network_type presets,
e.g. ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass
in a network_type that is in settings.bidirectional_network_types
if you want the graph to be fully bidirectional.

	Returns:

	nx.MultiDiGraph – G

	Return type:

	nx.MultiDiGraph

Notes

Very large query areas use the utils_geo._consolidate_subdivide_geometry
function to automatically make multiple requests: see that function’s
documentation for caveats.

	
osmnx.graph.graph_from_xml(filepath, *, bidirectional=False, simplify=True, retain_all=False, encoding='utf-8')

	Create a graph from data in an OSM XML file.

Do not load an XML file previously generated by OSMnx: this use case is
not supported and may not behave as expected. To save/load graphs to/from
disk for later use in OSMnx, use the io.save_graphml and
io.load_graphml functions instead.

Use the settings module’s useful_tags_node and useful_tags_way
settings to configure which OSM node/way tags are added as graph node/edge
attributes.

	Parameters:

	
	filepath (str | Path) – Path to file containing OSM XML data.

	bidirectional (bool) – If True, create bidirectional edges for one-way streets.

	simplify (bool) – If True, simplify graph topology with the simplify_graph function.

	retain_all (bool) – If True, return the entire graph even if it is not connected. If
False, retain only the largest weakly connected component.

	encoding (str) – The OSM XML file’s character encoding.

	Returns:

	MultiDiGraph – G

	Return type:

	networkx.MultiDiGraph

osmnx._http module

Handle HTTP requests to web APIs.

	
osmnx._http._config_dns(url)

	Force socket.getaddrinfo to use IP address instead of hostname.

Resolves the URL’s domain to an IP address so that we use the same server
for both 1) checking the necessary pause duration and 2) sending the query
itself even if there is round-robin redirecting among multiple server
machines on the server-side. Mutates the getaddrinfo function so it uses
the same IP address everytime it finds the hostname in the URL.

For example, the server overpass-api.de just redirects to one of the other
servers (currently gall.openstreetmap.de and lambert.openstreetmap.de). So
if we check the status endpoint of overpass-api.de, we may see results for
server gall, but when we submit the query itself it gets redirected to
server lambert. This could result in violating server lambert’s slot
management timing.

	Parameters:

	url (str) – The URL to consistently resolve the IP address of.

	Returns:

	None – None

	Return type:

	None

	
osmnx._http._get_http_headers(*, user_agent=None, referer=None, accept_language=None)

	Update the default requests HTTP headers with OSMnx information.

	Parameters:

	
	user_agent (str | None) – The user agent. If None, use settings.http_user_agent value.

	referer (str | None) – The referer. If None, use settings.http_referer value.

	accept_language (str | None) – The accept language. If None, use settings.http_accept_language
value.

	Returns:

	dict[str, str] – headers

	Return type:

	dict[str, str]

	
osmnx._http._hostname_from_url(url)

	Extract the hostname (domain) from a URL.

	Parameters:

	url (str) – The url from which to extract the hostname.

	Returns:

	hostname – The extracted hostname (domain).

	Return type:

	str

	
osmnx._http._parse_response(response)

	Parse JSON from a requests response and log the details.

	Parameters:

	response (Response) – The response object.

	Returns:

	response_json – Value will be a dict if the response is from the Google or Overpass
APIs, and a list if the response is from the Nominatim API.

	Return type:

	dict[str, Any] | list[dict[str, Any]]

	
osmnx._http._resolve_host_via_doh(hostname)

	Resolve hostname to IP address via Google’s public DNS-over-HTTPS API.

Necessary fallback as socket.gethostbyname will not always work when using
a proxy. See https://developers.google.com/speed/public-dns/docs/doh/json
If the user has set settings.doh_url_template=None or if resolution
fails (e.g., due to local network blocking DNS-over-HTTPS) the hostname
itself will be returned instead. Note that this means that server slot
management may be violated: see _config_dns documentation for details.

	Parameters:

	hostname (str) – The hostname to consistently resolve the IP address of.

	Returns:

	ip_address – Resolved IP address of host, or hostname itself if resolution failed.

	Return type:

	str

	
osmnx._http._retrieve_from_cache(url)

	Retrieve a HTTP response JSON object from the cache if it exists.

Returns None if there is a server remark in the cached response.

	Parameters:

	url (str) – The URL of the request.

	Returns:

	response_json – Cached response for url if it exists in the cache and does not
contain a server remark, otherwise None.

	Return type:

	dict[str, Any] | list[dict[str, Any]] | None

	
osmnx._http._save_to_cache(url, response_json, ok)

	Save a HTTP response JSON object to a file in the cache folder.

This calculates the checksum of url to generate the cache file name. If
the request was sent to server via POST instead of GET, then url should
be a GET-style representation of the request. Response is only saved to a
cache file if settings.use_cache is True, response_json is not None,
and ok is True.

Users should always pass OrderedDicts instead of dicts of parameters into
request functions, so the parameters remain in the same order each time,
producing the same URL string, and thus the same hash. Otherwise the cache
will eventually contain multiple saved responses for the same request
because the URL’s parameters appeared in a different order each time.

	Parameters:

	
	url (str) – The URL of the request.

	response_json (dict[str, Any] | list[dict[str, Any]]) – The JSON response from the server.

	ok (bool) – A requests.response.ok value.

	Returns:

	None – None

	Return type:

	None

	
osmnx._http._url_in_cache(url)

	Determine if a URL’s response exists in the cache.

Calculates the checksum of url to determine the cache file’s name.
Returns None if it cannot be found in the cache.

	Parameters:

	url (str) – The URL to look for in the cache.

	Returns:

	cache_filepath – Path to cached response for url if it exists, otherwise None.

	Return type:

	Path | None

osmnx.io module

File I/O functions to save/load graphs to/from files on disk.

	
osmnx.io._convert_bool_string(value)

	Convert a “True” or “False” string literal to corresponding boolean type.

This is necessary because Python will otherwise parse the string “False”
to the boolean value True, that is, bool(“False”) == True. This function
raises a ValueError if a value other than “True” or “False” is passed.

If the value is already a boolean, this function just returns it, to
accommodate usage when the value was originally inside a stringified list.

	Parameters:

	value (bool | str) – The string value to convert to bool.

	Returns:

	bool – bool_value

	Return type:

	bool

	
osmnx.io._convert_edge_attr_types(G, dtypes)

	Convert graph edges’ attributes using a dict of data types.

	Parameters:

	
	G (MultiDiGraph) – Graph to convert the edge attributes of.

	dtypes (dict[str, Any]) – Dict of edge attribute names:types.

	Returns:

	MultiDiGraph – G

	Return type:

	networkx.MultiDiGraph

	
osmnx.io._convert_graph_attr_types(G, dtypes)

	Convert graph-level attributes using a dict of data types.

	Parameters:

	
	G (MultiDiGraph) – Graph to convert the graph-level attributes of.

	dtypes (dict[str, Any]) – Dict of graph-level attribute names:types.

	Returns:

	MultiDiGraph – G

	Return type:

	networkx.MultiDiGraph

	
osmnx.io._convert_node_attr_types(G, dtypes)

	Convert graph nodes’ attributes using a dict of data types.

	Parameters:

	
	G (MultiDiGraph) – Graph to convert the node attributes of.

	dtypes (dict[str, Any]) – Dict of node attribute names:types.

	Returns:

	MultiDiGraph – G

	Return type:

	networkx.MultiDiGraph

	
osmnx.io._stringify_nonnumeric_cols(gdf)

	Make every non-numeric GeoDataFrame column (besides geometry) a string.

This allows proper serializing via Fiona of GeoDataFrames with mixed types
such as strings and ints in the same column.

	Parameters:

	gdf (GeoDataFrame) – GeoDataFrame to stringify non-numeric columns of.

	Returns:

	gdf – GeoDataFrame with non-numeric columns stringified.

	Return type:

	geopandas.GeoDataFrame

	
osmnx.io.load_graphml(filepath=None, *, graphml_str=None, node_dtypes=None, edge_dtypes=None, graph_dtypes=None)

	Load an OSMnx-saved GraphML file from disk or GraphML string.

This function converts node, edge, and graph-level attributes (serialized
as strings) to their appropriate data types. These can be customized as
needed by passing in dtypes arguments providing types or custom converter
functions. For example, if you want to convert some attribute’s values to
bool, consider using the built-in ox.io._convert_bool_string function
to properly handle “True”/”False” string literals as True/False booleans:
ox.load_graphml(fp, node_dtypes={my_attr: ox.io._convert_bool_string}).

If you manually configured the all_oneway=True setting, you may need to
manually specify here that edge oneway attributes should be type str.

Note that you must pass one and only one of filepath or graphml_str.
If passing graphml_str, you may need to decode the bytes read from your
file before converting to string to pass to this function.

	Parameters:

	
	filepath (str | Path | None) – Path to the GraphML file.

	graphml_str (str | None) – Valid and decoded string representation of a GraphML file’s contents.

	node_dtypes (dict[str, Any] | None) – Dict of node attribute names:types to convert values’ data types. The
type can be a type or a custom string converter function.

	edge_dtypes (dict[str, Any] | None) – Dict of edge attribute names:types to convert values’ data types. The
type can be a type or a custom string converter function.

	graph_dtypes (dict[str, Any] | None) – Dict of graph-level attribute names:types to convert values’ data
types. The type can be a type or a custom string converter function.

	Returns:

	MultiDiGraph – G

	Return type:

	networkx.MultiDiGraph

	
osmnx.io.save_graph_geopackage(G, filepath=None, *, directed=False, encoding='utf-8')

	Save graph nodes and edges to disk as layers in a GeoPackage file.

	Parameters:

	
	G (MultiDiGraph) – The graph to save.

	filepath (str | Path | None) – Path to the GeoPackage file including extension. If None, use default
settings.data_folder/graph.gpkg.

	directed (bool) – If False, save one edge for each undirected edge in the graph but
retain original oneway and to/from information as edge attributes. If
True, save one edge for each directed edge in the graph.

	encoding (str) – The character encoding of the saved GeoPackage file.

	Returns:

	None – None

	Return type:

	None

	
osmnx.io.save_graph_xml(G, filepath=None, *, way_tag_aggs=None, encoding='utf-8')

	Save graph to disk as an OSM XML file.

This function exists only to allow serialization to the OSM XML format
for applications that require it, and has constraints to conform to that.
As such, it has a limited use case which does not include saving/loading
graphs for subsequent OSMnx analysis. To save/load graphs to/from disk for
later use in OSMnx, use the io.save_graphml and io.load_graphml
functions instead. To load a graph from an OSM XML file that you have
downloaded or generated elsewhere, use the graph.graph_from_xml
function.

Use the settings module’s useful_tags_node and useful_tags_way
settings to configure which tags your graph is created and saved with.
This function merges graph edges such that each OSM way has one entry in
the XML output, with the way’s nodes topologically sorted. G must be
unsimplified to save as OSM XML: otherwise, one edge could comprise
multiple OSM ways, making it impossible to group and sort edges in way.
G should also have been created with ox.settings.all_oneway=True for
this function to behave properly.

	Parameters:

	
	G (MultiDiGraph) – Unsimplified, unprojected graph to save as an OSM XML file.

	filepath (str | Path | None) – Path to the saved file including extension. If None, use default
settings.data_folder/graph.osm.

	way_tag_aggs (dict[str, Any] | None) – Keys are OSM way tag keys and values are aggregation functions
(anything accepted as an argument by pandas.agg). Allows user to
aggregate graph edge attribute values into single OSM way values. If
None, or if some tag’s key does not exist in the dict, the way
attribute will be assigned the value of the first edge of the way.

	encoding (str) – The character encoding of the saved OSM XML file.

	Returns:

	None – None

	Return type:

	None

	
osmnx.io.save_graphml(G, filepath=None, *, gephi=False, encoding='utf-8')

	Save graph to disk as GraphML file.

	Parameters:

	
	G (MultiDiGraph) – The graph to save as.

	filepath (str | Path | None) – Path to the GraphML file including extension. If None, use default
settings.data_folder/graph.graphml.

	gephi (bool) – If True, give each edge a unique key/id for compatibility with Gephi’s
interpretation of the GraphML specification.

	encoding (str) – The character encoding of the saved GraphML file.

	Returns:

	None – None

	Return type:

	None

osmnx._nominatim module

Tools to work with the Nominatim API.

	
osmnx._nominatim._download_nominatim_element(query, *, by_osmid=False, limit=1, polygon_geojson=True)

	Retrieve an OSM element from the Nominatim API.

	Parameters:

	
	query (str | dict[str, str]) – Query string or structured query dict.

	by_osmid (bool) – If True, treat query as an OSM ID lookup rather than text search.

	limit (int) – Max number of results to return.

	polygon_geojson (bool) – Whether to retrieve the place’s geometry from the API.

	Returns:

	list[dict[str, Any]] – response_json

	Return type:

	list[dict[str, Any]]

	
osmnx._nominatim._nominatim_request(params, *, request_type='search', pause=1, error_pause=60)

	Send a HTTP GET request to the Nominatim API and return response.

	Parameters:

	
	params (OrderedDict[str, int | str]) – Key-value pairs of parameters.

	request_type (str) – {“search”, “reverse”, “lookup”}
Which Nominatim API endpoint to query.

	pause (float) – How long to pause before request, in seconds. Per the Nominatim usage
policy: “an absolute maximum of 1 request per second” is allowed.

	error_pause (float) – How long to pause in seconds before re-trying request if error.

	Returns:

	list[dict[str, Any]] – response_json

	Return type:

	list[dict[str, Any]]

osmnx._osm_xml module

Read/write OSM XML files.

For file format information see https://wiki.openstreetmap.org/wiki/OSM_XML

	
class osmnx._osm_xml._OSMContentHandler

	SAX content handler for OSM XML.

Builds an Overpass-like response JSON object in self.object. For format
notes, see https://wiki.openstreetmap.org/wiki/OSM_XML and
https://overpass-api.de

	
endElement(name)

	Signals the end of an element in non-namespace mode.

The name parameter contains the name of the element type, just
as with the startElement event.

	Return type:

	None

	Parameters:

	name (str)

	
startElement(name, attrs)

	Signals the start of an element in non-namespace mode.

The name parameter contains the raw XML 1.0 name of the
element type as a string and the attrs parameter holds an
instance of the Attributes class containing the attributes of
the element.

	Return type:

	None

	Parameters:

	
	name (str)

	attrs (AttributesImpl)

	
osmnx._osm_xml._add_nodes_xml(parent, gdf_nodes)

	Add graph nodes as subelements of an XML parent element.

	Parameters:

	
	parent (Element) – The XML parent element.

	gdf_nodes (GeoDataFrame) – A GeoDataFrame of graph nodes.

	Returns:

	None – None

	Return type:

	None

	
osmnx._osm_xml._add_ways_xml(parent, gdf_edges, way_tag_aggs)

	Add graph edges (grouped as ways) as subelements of an XML parent element.

	Parameters:

	
	parent (Element) – The XML parent element.

	gdf_edges (GeoDataFrame) – A GeoDataFrame of graph edges with OSM way “id” column for grouping
edges into ways.

	way_tag_aggs (dict[str, Any] | None) – Keys are OSM way tag keys and values are aggregation functions
(anything accepted as an argument by pandas.agg). Allows user to
aggregate graph edge attribute values into single OSM way values. If
None, or if some tag’s key does not exist in the dict, the way
attribute will be assigned the value of the first edge of the way.

	Returns:

	None – None

	Return type:

	None

	
osmnx._osm_xml._overpass_json_from_xml(filepath, encoding)

	Read OSM XML data from file and return Overpass-like JSON.

	Parameters:

	
	filepath (str | Path) – Path to file containing OSM XML data.

	encoding (str) – The XML file’s character encoding.

	Returns:

	response_json – A parsed JSON response from the Overpass API.

	Return type:

	dict[str, Any]

	
osmnx._osm_xml._save_graph_xml(G, filepath, way_tag_aggs, encoding='utf-8')

	Save graph to disk as an OSM XML file.

	Parameters:

	
	G (MultiDiGraph) – Unsimplified, unprojected graph to save as an OSM XML file.

	filepath (str | Path | None) – Path to the saved file including extension. If None, use default
settings.data_folder/graph.osm.

	way_tag_aggs (dict[str, Any] | None) – Keys are OSM way tag keys and values are aggregation functions
(anything accepted as an argument by pandas.agg). Allows user to
aggregate graph edge attribute values into single OSM way values. If
None, or if some tag’s key does not exist in the dict, the way
attribute will be assigned the value of the first edge of the way.

	encoding (str) – The character encoding of the saved OSM XML file.

	Returns:

	None – None

	Return type:

	None

	
osmnx._osm_xml._sort_nodes(G, osmid)

	Topologically sort the nodes of an OSM way.

	Parameters:

	
	G (MultiDiGraph) – The graph representing the OSM way.

	osmid (int) – The OSM way ID.

	Returns:

	ordered_nodes – The way’s node IDs in topologically sorted order.

	Return type:

	list[int]

osmnx._overpass module

Tools to work with the Overpass API.

	
osmnx._overpass._create_overpass_features_query(polygon_coord_str, tags)

	Create an Overpass features query string based on tags.

	Parameters:

	
	polygon_coord_str (str) – The lat lon coordinates.

	tags (dict[str, bool | str | list[str]]) – Tags used for finding elements in the search area.

	Returns:

	str – query

	Return type:

	str

	
osmnx._overpass._download_overpass_features(polygon, tags)

	Retrieve OSM features within some boundary polygon from the Overpass API.

	Parameters:

	
	polygon (Polygon) – Boundary to retrieve elements within.

	tags (dict[str, bool | str | list[str]]) – Tags used for finding elements in the selected area.

	Yields:

	response_json – JSON response from the Overpass server.

	Return type:

	Iterator[dict[str, Any]]

	
osmnx._overpass._download_overpass_network(polygon, network_type, custom_filter)

	Retrieve networked ways and nodes within boundary from the Overpass API.

	Parameters:

	
	polygon (Polygon | MultiPolygon) – The boundary to fetch the network ways/nodes within.

	network_type (str) – What type of street network to get if custom_filter is None.

	custom_filter (str | None) – A custom “ways” filter to be used instead of network_type presets.

	Yields:

	response_json – JSON response from the Overpass server.

	Return type:

	Iterator[dict[str, Any]]

	
osmnx._overpass._get_network_filter(network_type)

	Create a filter to query Overpass for the specified network type.

The filter queries Overpass for every OSM way with a “highway” tag but
excludes ways that are incompatible with the requested network type. You
can choose from the following types:

“all” retrieves all public and private-access ways currently in use.

“all_public” retrieves all public ways currently in use.

“bike” retrieves public bikeable ways and excludes foot ways, motor ways,
and anything tagged biking=no.

“drive” retrieves public drivable streets and excludes service roads,
anything tagged motor=no, and certain non-service roads tagged as
providing certain services (such as alleys or driveways).

“drive_service” retrieves public drivable streets including service roads
but excludes certain services (such as parking or emergency access).

“walk” retrieves public walkable ways and excludes cycle ways, motor ways,
and anything tagged foot=no. It includes service roads like parking lot
aisles and alleys that you can walk on even if they are unpleasant walks.

	Parameters:

	network_type (str) – {“all”, “all_public”, “bike”, “drive”, “drive_service”, “walk”}
What type of street network to retrieve.

	Returns:

	way_filter – The Overpass query filter.

	Return type:

	str

	
osmnx._overpass._get_overpass_pause(base_endpoint, *, recursive_delay=5, default_duration=60)

	Retrieve a pause duration from the Overpass API status endpoint.

Check the Overpass API status endpoint to determine how long to wait until
the next slot is available. You can disable this via the settings
module’s overpass_rate_limit setting.

	Parameters:

	
	base_endpoint (str) – Base Overpass API URL (without “/status” at the end).

	recursive_delay (float) – How long to wait between recursive calls if the server is currently
running a query.

	default_duration (float) – If a fatal error occurs, fall back on returning this value.

	Returns:

	pause – The current pause duration specified by the Overpass status endpoint.

	Return type:

	float

	
osmnx._overpass._make_overpass_polygon_coord_strs(polygon)

	Subdivide query polygon and return list of coordinate strings.

Project to UTM, divide polygon up into sub-polygons if area exceeds a
max size (in meters), project back to lat-lon, then get a list of
polygon(s) exterior coordinates. Ignore interior (“holes”) coordinates.

	Parameters:

	polygon (Polygon | MultiPolygon) – The (Multi)Polygon to convert to exterior coordinate strings.

	Returns:

	coord_strs – Exterior coordinates of polygon(s).

	Return type:

	list[str]

	
osmnx._overpass._make_overpass_settings()

	Make settings string to send in Overpass query.

	Returns:

	overpass_settings – The settings.overpass_settings string formatted with “timeout” and
“maxsize” values.

	Return type:

	str

	
osmnx._overpass._overpass_request(data, *, pause=None, error_pause=60)

	Send a HTTP POST request to the Overpass API and return response.

	Parameters:

	
	data (OrderedDict[str, Any]) – Key-value pairs of parameters.

	pause (float | None) – How long to pause in seconds before request. If None, will query API
status endpoint to find when next slot is available.

	error_pause (float) – How long to pause in seconds (in addition to pause) before re-trying
request if error.

	Returns:

	dict[str, Any] – response_json

	Return type:

	dict[str, Any]

osmnx.plot module

Visualize street networks, routes, orientations, and geospatial features.

	
osmnx.plot._config_ax(ax, crs, bbox, padding)

	Configure a matplotlib axes instance for display.

	Parameters:

	
	ax (Axes) – The axes instance.

	crs (Any) – The coordinate reference system of the plotted geometries.

	bbox (tuple[float, float, float, float]) – Bounding box as (north, south, east, west).

	padding (float) – Relative padding to add around bbox.

	Returns:

	Axes – ax

	Return type:

	matplotlib.axes._axes.Axes

	
osmnx.plot._get_colors_by_value(vals, num_bins, cmap, start, stop, na_color, equal_size)

	Map colors to the values in a Series of node/edge attribute values.

	Parameters:

	
	vals (Series) – Series labels are node/edge IDs and values are attribute values.

	num_bins (int | None) – If None, linearly map a color to each value. Otherwise, assign values
to this many bins then assign a color to each bin.

	cmap (str) – Name of the matplotlib colormap from which to choose the colors.

	start (float) – Where to start in the colorspace (from 0 to 1).

	stop (float) – Where to end in the colorspace (from 0 to 1).

	na_color (str) – The color to assign to nodes with missing attr values.

	equal_size (bool) – Ignored if num_bins is None. If True, bin into equal-sized quantiles
(requires unique bin edges). If False, bin into equal-spaced bins.

	Returns:

	color_series – Labels are node/edge IDs, values are colors as hex strings.

	Return type:

	pandas.Series

	
osmnx.plot._get_fig_ax(ax, figsize, bgcolor, polar)

	Generate a matplotlib Figure and (Polar)Axes or return existing ones.

	Parameters:

	
	ax (Axes | None) – If not None, plot on this pre-existing axes instance.

	figsize (tuple[float, float]) – If ax is None, create new figure with size (width, height).

	bgcolor (str | None) – Background color of figure.

	polar (bool) – If True, generate a PolarAxes instead of an Axes instance.

	Returns:

	tuple[Figure, Axes | PolarAxes] – fig, ax

	Return type:

	tuple[Figure, Axes | PolarAxes]

	
osmnx.plot._save_and_show(fig, ax, *, show=True, close=True, save=False, filepath=None, dpi=300)

	Save a figure to disk and/or show it, as specified by arguments.

	Parameters:

	
	fig (Figure) – The figure.

	ax (Axes) – The axes instance.

	show (bool) – If True, call pyplot.show() to show the figure.

	close (bool) – If True, call pyplot.close() to close the figure.

	save (bool) – If True, save the figure to disk at filepath.

	filepath (str | Path | None) – The path to the file if save is True. File format is determined from
the extension. If None, save at settings.imgs_folder/image.png.

	dpi (int) – The resolution of saved file if save is True.

	Returns:

	tuple[Figure, Axes] – fig, ax

	Return type:

	tuple[matplotlib.figure.Figure, matplotlib.axes._axes.Axes]

	
osmnx.plot._verify_mpl()

	Verify that matplotlib is installed and imported.

	Returns:

	None – None

	Return type:

	None

	
osmnx.plot.get_colors(n, *, cmap='viridis', start=0, stop=1, alpha=None)

	Return n evenly-spaced colors from a matplotlib colormap.

	Parameters:

	
	n (int) – How many colors to generate.

	cmap (str) – Name of the matplotlib colormap from which to choose the colors.

	start (float) – Where to start in the colorspace (from 0 to 1).

	stop (float) – Where to end in the colorspace (from 0 to 1).

	alpha (float | None) – If None, return colors as HTML-like hex triplet “#rrggbb” RGB
strings. If float, return as “#rrggbbaa” RGBa strings.

	Returns:

	list[str] – color_list

	Return type:

	list[str]

	
osmnx.plot.get_edge_colors_by_attr(G, attr, *, num_bins=None, cmap='viridis', start=0, stop=1, na_color='none', equal_size=False)

	Return colors based on edges’ numerical attribute values.

	Parameters:

	
	G (MultiDiGraph) – Input graph.

	attr (str) – Name of a node attribute with numerical values.

	num_bins (int | None) – If None, linearly map a color to each value. Otherwise, assign values
to this many bins then assign a color to each bin.

	cmap (str) – Name of the matplotlib colormap from which to choose the colors.

	start (float) – Where to start in the colorspace (from 0 to 1).

	stop (float) – Where to end in the colorspace (from 0 to 1).

	na_color (str) – The color to assign to nodes with missing attr values.

	equal_size (bool) – Ignored if num_bins is None. If True, bin into equal-sized quantiles
(requires unique bin edges). If False, bin into equal-spaced bins.

	Returns:

	edge_colors – Labels are (u, v, k) edge IDs, values are colors as hex strings.

	Return type:

	pandas.Series

	
osmnx.plot.get_node_colors_by_attr(G, attr, *, num_bins=None, cmap='viridis', start=0, stop=1, na_color='none', equal_size=False)

	Return colors based on nodes’ numerical attribute values.

	Parameters:

	
	G (MultiDiGraph) – Input graph.

	attr (str) – Name of a node attribute with numerical values.

	num_bins (int | None) – If None, linearly map a color to each value. Otherwise, assign values
to this many bins then assign a color to each bin.

	cmap (str) – Name of the matplotlib colormap from which to choose the colors.

	start (float) – Where to start in the colorspace (from 0 to 1).

	stop (float) – Where to end in the colorspace (from 0 to 1).

	na_color (str) – The color to assign to nodes with missing attr values.

	equal_size (bool) – Ignored if num_bins is None. If True, bin into equal-sized quantiles
(requires unique bin edges). If False, bin into equal-spaced bins.

	Returns:

	node_colors – Labels are node IDs, values are colors as hex strings.

	Return type:

	pandas.Series

	
osmnx.plot.plot_figure_ground(G, *, dist=805, street_widths=None, default_width=4, color='w', **pg_kwargs)

	Plot a figure-ground diagram of a street network.

	Parameters:

	
	G (MultiDiGraph) – An unprojected graph.

	dist (float) – How many meters to extend plot’s bounding box north, south, east, and
west from the graph’s center point. Default corresponds to a square
mile bounding box.

	street_widths (dict[str, float] | None) – Dict keys are street types (ie, OSM “highway” tags) and values are the
widths to plot them, in pixels.

	default_width (float) – Fallback width, in pixels, for any street type not in street_widths.

	color (str) – The color of the streets.

	pg_kwargs (Any) – Keyword arguments to pass to plot_graph.

	Returns:

	tuple[Figure, Axes] – fig, ax

	Return type:

	tuple[matplotlib.figure.Figure, matplotlib.axes._axes.Axes]

	
osmnx.plot.plot_footprints(gdf, *, ax=None, figsize=(8, 8), color='orange', edge_color='none', edge_linewidth=0, alpha=None, bgcolor='#111111', bbox=None, show=True, close=False, save=False, filepath=None, dpi=600)

	Visualize a GeoDataFrame of geospatial features’ footprints.

	Parameters:

	
	gdf (gpd.GeoDataFrame) – GeoDataFrame of footprints (i.e., Polygons and/or MultiPolygons).

	ax (Axes | None) – If not None, plot on this pre-existing axes instance.

	figsize (tuple[float, float]) – If ax is None, create new figure with size (width, height).

	color (str) – Color of the footprints.

	edge_color (str) – Color of the footprints’ edges.

	edge_linewidth (float) – Width of the footprints’ edges.

	alpha (float | None) – Opacity of the footprints’ edges.

	bgcolor (str) – Background color of the figure.

	bbox (tuple[float, float, float, float] | None) – Bounding box as (north, south, east, west). If None, calculate it
from the spatial extents of the geometries in gdf.

	show (bool) – If True, call pyplot.show() to show the figure.

	close (bool) – If True, call pyplot.close() to close the figure.

	save (bool) – If True, save the figure to disk at filepath.

	filepath (str | Path | None) – The path to the file if save is True. File format is determined from
the extension. If None, save at settings.imgs_folder/image.png.

	dpi (int) – The resolution of saved file if save is True.

	Returns:

	tuple[Figure, Axes] – fig, ax

	Return type:

	tuple[Figure, Axes]

	
osmnx.plot.plot_graph(G, *, ax=None, figsize=(8, 8), bgcolor='#111111', node_color='w', node_size=15, node_alpha=None, node_edgecolor='none', node_zorder=1, edge_color='#999999', edge_linewidth=1, edge_alpha=None, bbox=None, show=True, close=False, save=False, filepath=None, dpi=300)

	Visualize a graph.

	Parameters:

	
	G (nx.MultiGraph | nx.MultiDiGraph) – Input graph.

	ax (Axes | None) – If not None, plot on this pre-existing axes instance.

	figsize (tuple[float, float]) – If ax is None, create new figure with size (width, height).

	bgcolor (str) – Background color of the figure.

	node_color (str | Sequence[str]) – Color(s) of the nodes.

	node_size (float | Sequence[float]) – Size(s) of the nodes. If 0, then skip plotting the nodes.

	node_alpha (float | None) – Opacity of the nodes. If you passed RGBa values to node_color, set
node_alpha=None to use the alpha channel in node_color.

	node_edgecolor (str | Iterable[str]) – Color(s) of the nodes’ markers’ borders.

	node_zorder (int) – The zorder to plot nodes. Edges are always 1, so set node_zorder=0
to plot nodes beneath edges.

	edge_color (str | Iterable[str]) – Color(s) of the edges’ lines.

	edge_linewidth (float | Sequence[float]) – Width(s) of the edges’ lines. If 0, then skip plotting the edges.

	edge_alpha (float | None) – Opacity of the edges. If you passed RGBa values to edge_color, set
edge_alpha=None to use the alpha channel in edge_color.

	bbox (tuple[float, float, float, float] | None) – Bounding box as (north, south, east, west). If None, calculate it
from spatial extents of plotted geometries.

	show (bool) – If True, call pyplot.show() to show the figure.

	close (bool) – If True, call pyplot.close() to close the figure.

	save (bool) – If True, save the figure to disk at filepath.

	filepath (str | Path | None) – The path to the file if save is True. File format is determined from
the extension. If None, save at settings.imgs_folder/image.png.

	dpi (int) – The resolution of saved file if save is True.

	Returns:

	tuple[Figure, Axes] – fig, ax

	Return type:

	tuple[Figure, Axes]

	
osmnx.plot.plot_graph_route(G, route, *, route_color='r', route_linewidth=4, route_alpha=0.5, orig_dest_size=100, ax=None, **pg_kwargs)

	Visualize a path along a graph.

	Parameters:

	
	G (nx.MultiDiGraph) – Input graph.

	route (list[int]) – A path of node IDs.

	route_color (str) – The color of the route.

	route_linewidth (float) – Width of the route’s line.

	route_alpha (float) – Opacity of the route’s line.

	orig_dest_size (float) – Size of the origin and destination nodes.

	ax (Axes | None) – If not None, plot on this pre-existing axes instance.

	pg_kwargs (Any) – Keyword arguments to pass to plot_graph.

	Returns:

	tuple[Figure, Axes] – fig, ax

	Return type:

	tuple[Figure, Axes]

	
osmnx.plot.plot_graph_routes(G, routes, *, route_colors='r', route_linewidths=4, **pgr_kwargs)

	Visualize multiple paths along a graph.

	Parameters:

	
	G (MultiDiGraph) – Input graph.

	routes (Iterable[list[int]]) – Paths of node IDs.

	route_colors (str | Iterable[str]) – If string, the one color for all routes. Otherwise, the color for each
route.

	route_linewidths (float | Iterable[float]) – If float, the one linewidth for all routes. Otherwise, the linewidth
for each route.

	pgr_kwargs (Any) – Keyword arguments to pass to plot_graph_route.

	Returns:

	tuple[Figure, Axes] – fig, ax

	Return type:

	tuple[matplotlib.figure.Figure, matplotlib.axes._axes.Axes]

	
osmnx.plot.plot_orientation(G, *, num_bins=36, min_length=0, weight=None, ax=None, figsize=(5, 5), area=True, color='#003366', edgecolor='k', linewidth=0.5, alpha=0.7, title=None, title_y=1.05, title_font=None, xtick_font=None)

	Plot a polar histogram of a spatial network’s edge bearings.

Ignores self-loop edges as their bearings are undefined. If G is a
MultiGraph, all edge bearings will be bidirectional (ie, two reciprocal
bearings per undirected edge). If G is a MultiDiGraph, all edge bearings
will be directional (ie, one bearing per directed edge). See also the
bearings module.

For more info see: Boeing, G. 2019. “Urban Spatial Order: Street Network
Orientation, Configuration, and Entropy.” Applied Network Science, 4 (1),
67. https://doi.org/10.1007/s41109-019-0189-1

	Parameters:

	
	G (nx.MultiGraph | nx.MultiDiGraph) – Unprojected graph with bearing attributes on each edge.

	num_bins (int) – Number of bins. For example, if num_bins=36 is provided, then each
bin will represent 10 degrees around the compass.

	min_length (float) – Ignore edges with “length” attribute values less than min_length.

	weight (str | None) – If not None, weight the edges’ bearings by this (non-null) edge
attribute.

	ax (PolarAxes | None) – If not None, plot on this pre-existing axes instance (must have
projection=polar).

	figsize (tuple[float, float]) – If ax is None, create new figure with size (width, height).

	area (bool) – If True, set bar length so area is proportional to frequency.
Otherwise, set bar length so height is proportional to frequency.

	color (str) – Color of the histogram bars.

	edgecolor (str) – Color of the histogram bar edges.

	linewidth (float) – Width of the histogram bar edges.

	alpha (float) – Opacity of the histogram bars.

	title (str | None) – The figure’s title.

	title_y (float) – The y position to place title.

	title_font (dict[str, Any] | None) – The title’s fontdict to pass to matplotlib.

	xtick_font (dict[str, Any] | None) – The xtick labels’ fontdict to pass to matplotlib.

	Returns:

	tuple[Figure, PolarAxes] – fig, ax

	Return type:

	tuple[Figure, PolarAxes]

osmnx.projection module

Project a graph, GeoDataFrame, or geometry to a different CRS.

	
osmnx.projection.is_projected(crs)

	Determine if a coordinate reference system is projected or not.

	Parameters:

	crs (Any) – The identifier of the coordinate reference system. This can be
anything accepted by pyproj.CRS.from_user_input(), such as an
authority string or a WKT string.

	Returns:

	projected – True if crs is projected, otherwise False

	Return type:

	bool

	
osmnx.projection.project_gdf(gdf, *, to_crs=None, to_latlong=False)

	Project a GeoDataFrame from its current CRS to another.

If to_latlong is True, this projects the GeoDataFrame to the coordinate
reference system defined by settings.default_crs. Otherwise it projects
it to the CRS defined by to_crs. If to_crs is None, it projects it
to the CRS of an appropriate UTM zone given geometry’s bounds.

	Parameters:

	
	gdf (GeoDataFrame) – The GeoDataFrame to be projected.

	to_crs (Any | None) – If None, project to an appropriate UTM zone. Otherwise project to
this CRS.

	to_latlong (bool) – If True, project to settings.default_crs and ignore to_crs.

	Returns:

	gdf_proj – The projected GeoDataFrame.

	Return type:

	geopandas.GeoDataFrame

	
osmnx.projection.project_geometry(geometry, *, crs=None, to_crs=None, to_latlong=False)

	Project a Shapely geometry from its current CRS to another.

If to_latlong is True, this projects the geometry to the coordinate
reference system defined by settings.default_crs. Otherwise it projects
it to the CRS defined by to_crs. If to_crs is None, it projects it
to the CRS of an appropriate UTM zone given geometry’s bounds.

	Parameters:

	
	geometry (Geometry) – The geometry to be projected.

	crs (Any | None) – The initial CRS of geometry. If None, it will be set to
settings.default_crs.

	to_crs (Any | None) – If None, project to an appropriate UTM zone. Otherwise project to this
CRS.

	to_latlong (bool) – If True, project to settings.default_crs and ignore to_crs.

	Returns:

	geometry_proj, crs – The projected geometry and its new CRS.

	Return type:

	tuple[shapely.Geometry, Any]

	
osmnx.projection.project_graph(G, *, to_crs=None, to_latlong=False)

	Project a graph from its current CRS to another.

If to_latlong is True, this projects the graph to the coordinate
reference system defined by settings.default_crs. Otherwise it projects
it to the CRS defined by to_crs. If to_crs is None, it projects it
to the CRS of an appropriate UTM zone given geometry’s bounds.

	Parameters:

	
	G (MultiDiGraph) – The graph to be projected.

	to_crs (Any | None) – If None, project to an appropriate UTM zone. Otherwise project to
this CRS.

	to_latlong (bool) – If True, project to settings.default_crs and ignore to_crs.

	Returns:

	G_proj – The projected graph.

	Return type:

	networkx.MultiDiGraph

osmnx.routing module

Calculate edge speeds, travel times, and weighted shortest paths.

	
osmnx.routing._clean_maxspeed(maxspeed, *, agg=numpy.mean, convert_mph=True)

	Clean a maxspeed string and convert mph to kph if necessary.

If present, splits maxspeed on “|” (which denotes that the value contains
different speeds per lane) then aggregates the resulting values. If given
string is not a valid numeric string, tries to look up its value in
implicit maxspeed values mapping. Invalid inputs return None. See
https://wiki.openstreetmap.org/wiki/Key:maxspeed for details on values and
formats.

	Parameters:

	
	maxspeed (str | float) – An OSM way “maxspeed” attribute value. Null values are expected to be
of type float (numpy.nan), and non-null values are strings.

	agg (Callable[[Any], Any]) – Aggregation function if maxspeed contains multiple values (default
is numpy.mean).

	convert_mph (bool) – If True, convert miles per hour to kilometers per hour.

	Returns:

	clean_value – Clean value resulting from agg function.

	Return type:

	float | None

	
osmnx.routing._collapse_multiple_maxspeed_values(value, agg)

	Collapse a list of maxspeed values to a single value.

Returns None if a ValueError is encountered.

	Parameters:

	
	value (str | float | list[str | float]) – An OSM way “maxspeed” attribute value. Null values are expected to be
of type float (numpy.nan), and non-null values are strings.

	agg (Callable[[Any], Any]) – The aggregation function to reduce the list to a single value.

	Returns:

	collapsed – If value was a string or null, it is just returned directly.
Otherwise, the return is a float representation of the aggregated
value in the list (converted to kph if original value was in mph).

	Return type:

	float | str | None

	
osmnx.routing._single_shortest_path(G, orig, dest, weight)

	Solve the shortest path from an origin node to a destination node.

This function uses Dijkstra’s algorithm. It is a convenience wrapper
around networkx.shortest_path, with exception handling for unsolvable
paths. If the path is unsolvable, it returns None.

	Parameters:

	
	G (MultiDiGraph) – Input graph.

	orig (int) – Origin node ID.

	dest (int) – Destination node ID.

	weight (str) – Edge attribute to minimize when solving shortest path.

	Returns:

	path – The node IDs constituting the shortest path.

	Return type:

	list[int] | None

	
osmnx.routing._verify_edge_attribute(G, attr)

	Verify attribute values are numeric and non-null across graph edges.

Raises a ValueError if this attribute contains non-numeric values, and
issues a UserWarning if this attribute is missing or null on any edges.

	Parameters:

	
	G (MultiDiGraph) – Input graph.

	attr (str) – Name of the edge attribute to verify.

	Returns:

	None – None

	Return type:

	None

	
osmnx.routing.add_edge_speeds(G, *, hwy_speeds=None, fallback=None, agg=numpy.mean)

	Add edge speeds (km per hour) to graph as new speed_kph edge attributes.

By default, this imputes free-flow travel speeds for all edges via the
mean maxspeed value of the edges of each highway type. For highway types
in the graph that have no maxspeed value on any edge, it assigns the
mean of all maxspeed values in graph.

This default mean-imputation can obviously be imprecise, and the user can
override it by passing in hwy_speeds and/or fallback arguments that
correspond to local speed limit standards. The user can also specify a
different aggregation function (such as the median) to impute missing
values from the observed values.

If edge maxspeed attribute has “mph” in it, value will automatically be
converted from miles per hour to km per hour. Any other speed units should
be manually converted to km per hour prior to running this function,
otherwise there could be unexpected results. If “mph” does not appear in
the edge’s maxspeed attribute string, then function assumes kph, per OSM
guidelines: https://wiki.openstreetmap.org/wiki/Map_Features/Units

	Parameters:

	
	G (MultiDiGraph) – Input graph.

	hwy_speeds (dict[str, float] | None) – Dict keys are OSM highway types and values are typical speeds (km per
hour) to assign to edges of that highway type for any edges missing
speed data. Any edges with highway type not in hwy_speeds will be
assigned the mean pre-existing speed value of all edges of that
highway type.

	fallback (float | None) – Default speed value (km per hour) to assign to edges whose highway
type did not appear in hwy_speeds and had no pre-existing speed
attribute values on any edge.

	agg (Callable[[Any], Any]) – Aggregation function to impute missing values from observed values.
The default is numpy.mean, but you might also consider for example
numpy.median, numpy.nanmedian, or your own custom function.

	Returns:

	G – Graph with speed_kph attributes on all edges.

	Return type:

	networkx.MultiDiGraph

	
osmnx.routing.add_edge_travel_times(G)

	Add edge travel time (seconds) to graph as new travel_time edge attributes.

Calculates free-flow travel time along each edge, based on length and
speed_kph attributes. Note: run add_edge_speeds first to generate the
speed_kph attribute. All edges must have length and speed_kph
attributes and all their values must be non-null.

	Parameters:

	G (MultiDiGraph) – Input graph.

	Returns:

	G – Graph with travel_time attributes on all edges.

	Return type:

	networkx.MultiDiGraph

	
osmnx.routing.k_shortest_paths(G, orig, dest, k, *, weight='length')

	Solve k shortest paths from an origin node to a destination node.

Uses Yen’s algorithm. See also shortest_path to solve just the one
shortest path.

	Parameters:

	
	G (MultiDiGraph) – Input graph.

	orig (int) – Origin node ID.

	dest (int) – Destination node ID.

	k (int) – Number of shortest paths to solve.

	weight (str) – Edge attribute to minimize when solving shortest paths.

	Yields:

	path – The node IDs constituting the next-shortest path.

	Return type:

	Iterator[list[int]]

	
osmnx.routing.route_to_gdf(G, route, *, weight='length')

	Return a GeoDataFrame of the edges in a path, in order.

	Parameters:

	
	G (MultiDiGraph) – Input graph.

	route (list[int]) – Node IDs constituting the path.

	weight (str) – Attribute value to minimize when choosing between parallel edges.

	Returns:

	GeoDataFrame – gdf_edges

	Return type:

	geopandas.GeoDataFrame

	
osmnx.routing.shortest_path(G, orig, dest, *, weight='length', cpus=1)

	Solve shortest path from origin node(s) to destination node(s).

Uses Dijkstra’s algorithm. If orig and dest are single node IDs, this
will return a list of the nodes constituting the shortest path between
them. If orig and dest are lists of node IDs, this will return a list
of lists of the nodes constituting the shortest path between each
origin-destination pair. If a path cannot be solved, this will return None
for that path. You can parallelize solving multiple paths with the cpus
parameter, but be careful to not exceed your available RAM.

See also k_shortest_paths to solve multiple shortest paths between a
single origin and destination. For additional functionality or different
solver algorithms, use NetworkX directly.

	Parameters:

	
	G (MultiDiGraph) – Input graph,

	orig (int | Iterable[int]) – Origin node ID(s).

	dest (int | Iterable[int]) – Destination node ID(s).

	weight (str) – Edge attribute to minimize when solving shortest path.

	cpus (int | None) – How many CPU cores to use. If None, use all available.

	Returns:

	path – The node IDs constituting the shortest path, or, if orig and dest
are both iterable, then a list of such paths.

	Return type:

	list[int] | None | list[list[int] | None]

osmnx.settings module

Global settings that can be configured by the user.

	all_onewaybool
	Only use if subsequently saving graph to an OSM XML file via the
save_graph_xml function. If True, forces all ways to be added as one-way
ways, preserving the original order of the nodes in the OSM way. This also
retains the original OSM way’s oneway tag’s string value as edge attribute
values, rather than converting them to True/False bool values. Default is
False.

	bidirectional_network_typeslist[str]
	Network types for which a fully bidirectional graph will be created.
Default is [“walk”].

	cache_folderstr | Path
	Path to folder to save/load HTTP response cache files, if the use_cache
setting is True. Default is “./cache”.

	cache_only_modebool
	If True, download network data from Overpass then raise a
CacheOnlyModeInterrupt error for user to catch. This prevents graph
building from taking place and instead just saves Overpass response to
cache. Useful for sequentially caching lots of raw data (as you can
only query Overpass one request at a time) then using the local cache to
quickly build many graphs simultaneously with multiprocessing. Default is
False.

	data_folderstr | Path
	Path to folder to save/load graph files by default. Default is “./data”.

	default_accessstr
	Filter for the OSM “access” tag. Default is ‘[“access”!~”private”]’.
Note that also filtering out “access=no” ways prevents including
transit-only bridges (e.g., Tilikum Crossing) from appearing in drivable
road network (e.g., ‘[“access”!~”private|no”]’). However, some drivable
tollroads have “access=no” plus a “access:conditional” tag to clarify when
it is accessible, so we can’t filter out all “access=no” ways by default.
Best to be permissive here then remove complicated combinations of tags
programatically after the full graph is downloaded and constructed.

	default_crsstr
	Default coordinate reference system to set when creating graphs. Default
is “epsg:4326”.

	doh_url_templatestr | None
	Endpoint to resolve DNS-over-HTTPS if local DNS resolution fails. Set to
None to disable DoH, but see downloader._config_dns documentation for
caveats. Default is: “https://8.8.8.8/resolve?name={hostname}”

	elevation_url_templatestr
	Endpoint of the Google Maps Elevation API (or equivalent), containing
exactly two parameters: locations and key. Default is:
“https://maps.googleapis.com/maps/api/elevation/json?locations={locations}&key={key}”
One example of an alternative equivalent would be Open Topo Data:
“https://api.opentopodata.org/v1/aster30m?locations={locations}&key={key}”

	http_accept_languagestr
	HTTP header accept-language. Default is “en”. Note that Nominatim’s
default language is “en” and it may sort its results’ importance scores
differently if a different language is specified.

	http_refererstr
	HTTP header referer. Default is
“OSMnx Python package (https://github.com/gboeing/osmnx)”.

	http_user_agentstr
	HTTP header user-agent. Default is
“OSMnx Python package (https://github.com/gboeing/osmnx)”.

	imgs_folderstr | Path
	Path to folder in which to save plotted images by default. Default is
“./images”.

	log_filebool
	If True, save log output to a file in logs_folder. Default is False.

	log_filenamestr
	Name of the log file, without file extension. Default is “osmnx”.

	log_consolebool
	If True, print log output to the console (terminal window). Default is
False.

	log_levelint
	One of Python’s logger.level constants. Default is logging.INFO.

	log_namestr
	Name of the logger. Default is “OSMnx”.

	logs_folderstr | Path
	Path to folder in which to save log files. Default is “./logs”.

	max_query_area_sizefloat
	Maximum area for any part of the geometry in meters: any polygon bigger
than this will get divided up for multiple queries to the API. Default is
2500000000.

	nominatim_keystr | None
	Your Nominatim API key, if you are using an API instance that requires
one. Default is None.

	nominatim_urlstr
	The base API url to use for Nominatim queries. Default is
“https://nominatim.openstreetmap.org/”.

	overpass_memoryint | None
	Overpass server memory allocation size for the query, in bytes. If
None, server will choose its default allocation size. Use with caution.
Default is None.

	overpass_rate_limitbool
	If True, check the Overpass server status endpoint for how long to
pause before making request. Necessary if server uses slot management,
but can be set to False if you are running your own Overpass instance
without rate limiting. Default is True.

	overpass_settingsstr
	Settings string for Overpass queries. Default is
“[out:json][timeout:{timeout}]{maxsize}”. By default, the {timeout} and
{maxsize} values are set dynamically by OSMnx when used.
To query, for example, historical OSM data as of a certain date:
‘[out:json][timeout:90][date:”2019-10-28T19:20:00Z”]’. Use with caution.

	overpass_urlstr
	The base API url to use for Overpass queries. Default is
“https://overpass-api.de/api”.

	requests_kwargsdict[str, Any]
	Optional keyword args to pass to the requests package when connecting
to APIs, for example to configure authentication or provide a path to
a local certificate file. More info on options such as auth, cert,
verify, and proxies can be found in the requests package advanced docs.
Default is {}.

	requests_timeoutint
	The timeout interval in seconds for HTTP requests, and (when applicable)
for Overpass server to use for executing the query. Default is 180.

	use_cachebool
	If True, cache HTTP responses locally in cache_folder instead of calling
API repeatedly for the same request. Default is True.

	useful_tags_nodelist[str]
	OSM “node” tags to add as graph node attributes, when present in the data
retrieved from OSM. Default is [“highway”, “junction”, “railway”, “ref”].

	useful_tags_waylist[str]
	OSM “way” tags to add as graph edge attributes, when present in the data
retrieved from OSM. Default is [“access”, “area”, “bridge”, “est_width”,
“highway”, “junction”, “landuse”, “lanes”, “maxspeed”, “name”, “oneway”,
“ref”, “service”, “tunnel”, “width”].

osmnx.simplification module

Simplify, correct, and consolidate spatial graph nodes and edges.

	
osmnx.simplification._build_path(G, endpoint, endpoint_successor, endpoints)

	Build a path of nodes from one endpoint node to next endpoint node.

	Parameters:

	
	G (MultiDiGraph) – Input graph.

	endpoint (int) – Ehe endpoint node from which to start the path.

	endpoint_successor (int) – The successor of endpoint through which the path to the next endpoint
will be built.

	endpoints (set[int]) – The set of all nodes in the graph that are endpoints.

	Returns:

	path – The first and last items in the resulting path list are endpoint
nodes, and all other items are interstitial nodes that can be removed
subsequently.

	Return type:

	list[int]

	
osmnx.simplification._consolidate_intersections_rebuild_graph(G, tolerance, reconnect_edges, node_attr_aggs)

	Consolidate intersections comprising clusters of nearby nodes.

Merge nodes and return a rebuilt graph with consolidated intersections and
reconnected edge geometries.

	Parameters:

	
	G (MultiDiGraph) – A projected graph.

	tolerance (float | dict[int, float]) – Nodes are buffered to this distance (in graph’s geometry’s units) and
subsequent overlaps are dissolved into a single node. If scalar, then
that single value will be used for all nodes. If dict (mapping node
IDs to individual values), then those values will be used per node and
any missing node IDs will not be buffered.

	reconnect_edges (bool) – If True, reconnect edges (and their geometries) to the consolidated
nodes in rebuilt graph, and update the edge length attributes. If
False, the returned graph has no edges (which is faster if you just
need topologically consolidated intersection counts).

	node_attr_aggs (dict[str, Any] | None) – Allows user to aggregate node attributes values when merging nodes.
Keys are node attribute names and values are aggregation functions
(anything accepted as an argument by pandas.agg). Node attributes
not in node_attr_aggs will contain the unique values across the
merged nodes. If None, defaults to {“elevation”: numpy.mean}.

	Returns:

	Gc – A rebuilt graph with consolidated intersections and (optionally)
reconnected edge geometries.

	Return type:

	networkx.MultiDiGraph

	
osmnx.simplification._get_paths_to_simplify(G, node_attrs_include, edge_attrs_differ)

	Generate all the paths to be simplified between endpoint nodes.

The path is ordered from the first endpoint, through the interstitial nodes,
to the second endpoint.

	Parameters:

	
	G (MultiDiGraph) – Input graph.

	node_attrs_include (Iterable[str] | None) – Node attribute names for relaxing the strictness of endpoint
determination. A node is always an endpoint if it possesses one or
more of the attributes in node_attrs_include.

	edge_attrs_differ (Iterable[str] | None) – Edge attribute names for relaxing the strictness of endpoint
determination. A node is always an endpoint if its incident edges have
different values than each other for any attribute in
edge_attrs_differ.

	Yields:

	path_to_simplify

	Return type:

	Iterator[list[int]]

	
osmnx.simplification._is_endpoint(G, node, node_attrs_include, edge_attrs_differ)

	Determine if a node is a true endpoint of an edge.

Return True if the node is a “true” endpoint of an edge in the network,
otherwise False. OpenStreetMap data includes many nodes that exist only as
geometric vertices to allow ways to curve. node is a true edge endpoint
if it satisfies at least 1 of the following 5 rules:

	It is its own neighbor (ie, it self-loops).

2) Or, it has no incoming edges or no outgoing edges (ie, all its incident
edges are inbound or all its incident edges are outbound).

	Or, it does not have exactly two neighbors and degree of 2 or 4.

4) Or, if node_attrs_include is not None and it has one or more of the
attributes in node_attrs_include.

5) Or, if edge_attrs_differ is not None and its incident edges have
different values than each other for any of the edge attributes in
edge_attrs_differ.

	Parameters:

	
	G (MultiDiGraph) – Input graph.

	node (int) – The ID of the node.

	node_attrs_include (Iterable[str] | None) – Node attribute names for relaxing the strictness of endpoint
determination. A node is always an endpoint if it possesses one or
more of the attributes in node_attrs_include.

	edge_attrs_differ (Iterable[str] | None) – Edge attribute names for relaxing the strictness of endpoint
determination. A node is always an endpoint if its incident edges have
different values than each other for any attribute in
edge_attrs_differ.

	Returns:

	bool – endpoint

	Return type:

	bool

	
osmnx.simplification._merge_nodes_geometric(G, tolerance)

	Geometrically merge nodes within some distance of each other.

	Parameters:

	
	G (MultiDiGraph) – A projected graph.

	tolerance (float | dict[int, float]) – Nodes are buffered to this distance (in graph’s geometry’s units) and
subsequent overlaps are dissolved into a single node. If scalar, then
that single value will be used for all nodes. If dict (mapping node
IDs to individual values), then those values will be used per node and
any missing node IDs will not be buffered.

	Returns:

	merged – The merged overlapping polygons of the buffered nodes.

	Return type:

	geopandas.GeoSeries

	
osmnx.simplification._remove_rings(G, node_attrs_include, edge_attrs_differ)

	Remove all graph components that consist only of a single chordless cycle.

This identifies all connected components in the graph that consist only of
a single isolated self-contained ring, and removes them from the graph.

	Parameters:

	
	G (MultiDiGraph) – Input graph.

	node_attrs_include (Iterable[str] | None) – Node attribute names for relaxing the strictness of endpoint
determination. A node is always an endpoint if it possesses one or
more of the attributes in node_attrs_include.

	edge_attrs_differ (Iterable[str] | None) – Edge attribute names for relaxing the strictness of endpoint
determination. A node is always an endpoint if its incident edges have
different values than each other for any attribute in
edge_attrs_differ.

	Returns:

	G – Graph with all chordless cycle components removed.

	Return type:

	networkx.MultiDiGraph

	
osmnx.simplification.consolidate_intersections(G, *, tolerance=10, rebuild_graph=True, dead_ends=False, reconnect_edges=True, node_attr_aggs=None)

	Consolidate intersections comprising clusters of nearby nodes.

Merges nearby nodes and returns either their centroids or a rebuilt graph
with consolidated intersections and reconnected edge geometries. The
tolerance argument can be a single value applied to all nodes or
individual per-node values. It should be adjusted to approximately match
street design standards in the specific street network, and you should use
a projected graph to work in meaningful and consistent units like meters.
Note: tolerance represents a per-node buffering radius. For example, to
consolidate nodes within 10 meters of each other, use tolerance=5.

When rebuild_graph is False, it uses a purely geometric (and relatively
fast) algorithm to identify “geometrically close” nodes, merge them, and
return the merged intersections’ centroids. When rebuild_graph is True,
it uses a topological (and slower but more accurate) algorithm to identify
“topologically close” nodes, merge them, then rebuild/return the graph.
Returned graph’s node IDs represent clusters rather than “osmid” values.
Refer to nodes’ “osmid_original” attributes for original “osmid” values.
If multiple nodes were merged together, the “osmid_original” attribute is
a list of merged nodes’ “osmid” values.

Divided roads are often represented by separate centerline edges. The
intersection of two divided roads thus creates 4 nodes, representing where
each edge intersects a perpendicular edge. These 4 nodes represent a
single intersection in the real world. A similar situation occurs with
roundabouts and traffic circles. This function consolidates nearby nodes
by buffering them to an arbitrary distance, merging overlapping buffers,
and taking their centroid.

	Parameters:

	
	G (nx.MultiDiGraph) – A projected graph.

	tolerance (float | dict[int, float]) – Nodes are buffered to this distance (in graph’s geometry’s units) and
subsequent overlaps are dissolved into a single node. If scalar, then
that single value will be used for all nodes. If dict (mapping node
IDs to individual values), then those values will be used per node and
any missing node IDs will not be buffered.

	rebuild_graph (bool) – If True, consolidate the nodes topologically, rebuild the graph, and
return as MultiDiGraph. Otherwise, consolidate the nodes geometrically
and return the consolidated node points as GeoSeries.

	dead_ends (bool) – If False, discard dead-end nodes to return only street-intersection
points.

	reconnect_edges (bool) – If True, reconnect edges (and their geometries) to the consolidated
nodes in rebuilt graph, and update the edge length attributes. If
False, the returned graph has no edges (which is faster if you just
need topologically consolidated intersection counts). Ignored if
rebuild_graph is not True.

	node_attr_aggs (dict[str, Any] | None) – Allows user to aggregate node attributes values when merging nodes.
Keys are node attribute names and values are aggregation functions
(anything accepted as an argument by pandas.agg). Node attributes
not in node_attr_aggs will contain the unique values across the
merged nodes. If None, defaults to {“elevation”: numpy.mean}.

	Returns:

	G or gs – If rebuild_graph=True, returns MultiDiGraph with consolidated
intersections and (optionally) reconnected edge geometries. If
rebuild_graph=False, returns GeoSeries of Points representing the
centroids of street intersections.

	Return type:

	nx.MultiDiGraph | gpd.GeoSeries

	
osmnx.simplification.simplify_graph(G, *, node_attrs_include=None, edge_attrs_differ=None, remove_rings=True, track_merged=False, edge_attr_aggs=None)

	Simplify a graph’s topology by removing interstitial nodes.

This simplifies the graph’s topology by removing all nodes that are not
intersections or dead-ends, by creating an edge directly between the end
points that encapsulate them while retaining the full geometry of the
original edges, saved as a new geometry attribute on the new edge.

Note that only simplified edges receive a geometry attribute. Some of
the resulting consolidated edges may comprise multiple OSM ways, and if
so, their unique attribute values are stored as a list. Optionally, the
simplified edges can receive a merged_edges attribute that contains a
list of all the (u, v) node pairs that were merged together.

Use the node_attrs_include or edge_attrs_differ parameters to relax
simplification strictness. For example, edge_attrs_differ=[“osmid”] will
retain every node whose incident edges have different OSM IDs. This lets
you keep nodes at elbow two-way intersections (but be aware that sometimes
individual blocks have multiple OSM IDs within them too). You could also
use this parameter to retain nodes where sidewalks or bike lanes begin/end
in the middle of a block. Or for example, node_attrs_include=[“highway”]
will retain every node with a “highway” attribute (regardless of its
value), even if it does not represent a street junction.

	Parameters:

	
	G (MultiDiGraph) – Input graph.

	node_attrs_include (Iterable[str] | None) – Node attribute names for relaxing the strictness of endpoint
determination. A node is always an endpoint if it possesses one or
more of the attributes in node_attrs_include.

	edge_attrs_differ (Iterable[str] | None) – Edge attribute names for relaxing the strictness of endpoint
determination. A node is always an endpoint if its incident edges have
different values than each other for any attribute in
edge_attrs_differ.

	remove_rings (bool) – If True, remove any graph components that consist only of a single
chordless cycle (i.e., an isolated self-contained ring).

	track_merged (bool) – If True, add merged_edges attribute on simplified edges, containing
a list of all the (u, v) node pairs that were merged together.

	edge_attr_aggs (dict[str, Any] | None) – Allows user to aggregate edge segment attributes when simplifying an
edge. Keys are edge attribute names and values are aggregation
functions to apply to these attributes when they exist for a set of
edges being merged. Edge attributes not in edge_attr_aggs will
contain the unique values across the merged edge segments. If None,
defaults to {“length”: sum, “travel_time”: sum}.

	Returns:

	G – Topologically simplified graph, with a new geometry attribute on
each simplified edge.

	Return type:

	networkx.MultiDiGraph

osmnx.stats module

Calculate geometric and topological network measures.

This module defines streets as the edges in an undirected representation of
the graph. Using undirected graph edges prevents double-counting bidirectional
edges of a two-way street, but may double-count a divided road’s separate
centerlines with different end point nodes. Due to OSMnx’s periphery cleaning
when the graph was created, you will get accurate node degrees (and in turn
streets-per-node counts) even at the periphery of the graph.

You can use NetworkX directly for additional topological network measures.

	
osmnx.stats.basic_stats(G, *, area=None, clean_int_tol=None)

	Calculate basic descriptive geometric and topological measures of a graph.

Density measures are only calculated if area is provided and clean
intersection measures are only calculated if clean_int_tol is provided.

	Parameters:

	
	G (MultiDiGraph) – Input graph.

	area (float | None) – If not None, calculate density measures and use area (in square
meters) as the denominator.

	clean_int_tol (float | None) – If not None, calculate consolidated intersections count (and density,
if area is also provided) and use this tolerance value. Refer to the
simplification.consolidate_intersections function documentation for
details.

	Returns:

	dict[str, Any] – stats –

	Dictionary containing the following keys:
	
	circuity_avg - see circuity_avg function documentation

	clean_intersection_count - see clean_intersection_count function documentation

	clean_intersection_density_km - clean_intersection_count per sq km

	edge_density_km - edge_length_total per sq km

	edge_length_avg - edge_length_total / m

	edge_length_total - see edge_length_total function documentation

	intersection_count - see intersection_count function documentation

	intersection_density_km - intersection_count per sq km

	k_avg - graph’s average node degree (in-degree and out-degree)

	m - count of edges in graph

	n - count of nodes in graph

	node_density_km - n per sq km

	self_loop_proportion - see self_loop_proportion function documentation

	street_density_km - street_length_total per sq km

	street_length_avg - street_length_total / street_segment_count

	street_length_total - see street_length_total function documentation

	street_segment_count - see street_segment_count function documentation

	streets_per_node_avg - see streets_per_node_avg function documentation

	streets_per_node_counts - see streets_per_node_counts function documentation

	streets_per_node_proportions - see streets_per_node_proportions function documentation

	Return type:

	dict[str, Any]

	
osmnx.stats.circuity_avg(Gu)

	Calculate average street circuity using edges of undirected graph.

Circuity is the sum of edge lengths divided by the sum of straight-line
distances between edge endpoints. Calculates straight-line distance as
euclidean distance if projected or great-circle distance if unprojected.
Returns None if the edge lengths sum to zero.

	Parameters:

	Gu (MultiGraph) – Undirected input graph.

	Returns:

	circuity_avg – The graph’s average undirected edge circuity.

	Return type:

	float | None

	
osmnx.stats.count_streets_per_node(G, *, nodes=None)

	Count how many physical street segments connect to each node in a graph.

This function uses an undirected representation of the graph and special
handling of self-loops to accurately count physical streets rather than
directed edges. Note: this function is automatically run by all the
graph.graph_from_x functions prior to truncating the graph to the
requested boundaries, to add accurate street_count attributes to each
node even if some of its neighbors are outside the requested graph
boundaries.

	Parameters:

	
	G (MultiDiGraph) – Input graph.

	nodes (Iterable[int] | None) – Which node IDs to get counts for. If None, use all graph nodes.
Otherwise calculate counts only for these node IDs.

	Returns:

	streets_per_node – Counts of how many physical streets connect to each node, with keys =
node ids and values = counts.

	Return type:

	dict[int, int]

	
osmnx.stats.edge_length_total(G)

	Calculate graph’s total edge length.

	Parameters:

	G (MultiGraph) – Input graph.

	Returns:

	length – Total length (meters) of edges in graph.

	Return type:

	float

	
osmnx.stats.intersection_count(G, *, min_streets=2)

	Count the intersections in a graph.

Intersections are defined as nodes with at least min_streets number of
streets incident on them.

	Parameters:

	
	G (MultiDiGraph) – Input graph.

	min_streets (int) – A node must have at least min_streets incident on them to count as
an intersection.

	Returns:

	count – Count of intersections in graph.

	Return type:

	int

	
osmnx.stats.self_loop_proportion(Gu)

	Calculate percent of edges that are self-loops in a graph.

A self-loop is defined as an edge from node u to node v where u==v.

	Parameters:

	Gu (MultiGraph) – Undirected input graph.

	Returns:

	proportion – Proportion of graph edges that are self-loops.

	Return type:

	float

	
osmnx.stats.street_length_total(Gu)

	Calculate graph’s total street segment length.

	Parameters:

	Gu (MultiGraph) – Undirected input graph.

	Returns:

	length – Total length (meters) of streets in graph.

	Return type:

	float

	
osmnx.stats.street_segment_count(Gu)

	Count the street segments in a graph.

	Parameters:

	Gu (MultiGraph) – Undirected input graph.

	Returns:

	count – Count of street segments in graph.

	Return type:

	int

	
osmnx.stats.streets_per_node(G)

	Retrieve nodes’ street_count attribute values.

See also the count_streets_per_node function for the calculation.

	Parameters:

	G (MultiDiGraph) – Input graph.

	Returns:

	spn – Dictionary with node ID keys and street count values.

	Return type:

	dict[int, int]

	
osmnx.stats.streets_per_node_avg(G)

	Calculate graph’s average count of streets per node.

	Parameters:

	G (MultiDiGraph) – Input graph.

	Returns:

	spna – Average count of streets per node.

	Return type:

	float

	
osmnx.stats.streets_per_node_counts(G)

	Calculate streets-per-node counts.

	Parameters:

	G (MultiDiGraph) – Input graph.

	Returns:

	spnc – Dictionary keyed by count of streets incident on each node, and with
values of how many nodes in the graph have this count.

	Return type:

	dict[int, int]

	
osmnx.stats.streets_per_node_proportions(G)

	Calculate streets-per-node proportions.

	Parameters:

	G (MultiDiGraph) – Input graph.

	Returns:

	spnp – Dictionary keyed by count of streets incident on each node, and with
values of what proportion of nodes in the graph have this count.

	Return type:

	dict[int, float]

osmnx.truncate module

Truncate graph by distance, bounding box, or polygon.

	
osmnx.truncate.largest_component(G, *, strongly=False)

	Return G’s largest weakly or strongly connected component as a graph.

	Parameters:

	
	G (MultiDiGraph) – Input graph.

	strongly (bool) – If True, return the largest strongly connected component. Otherwise
return the largest weakly connected component.

	Returns:

	G – The largest connected component subgraph of the original graph.

	Return type:

	networkx.MultiDiGraph

	
osmnx.truncate.truncate_graph_bbox(G, bbox, *, truncate_by_edge=False)

	Remove from a graph every node that falls outside a bounding box.

	Parameters:

	
	G (MultiDiGraph) – Input graph.

	bbox (tuple[float, float, float, float]) – Bounding box as (north, south, east, west).

	truncate_by_edge (bool) – If True, retain nodes outside bounding box if at least one of node’s
neighbors is within the bounding box.

	Returns:

	G – The truncated graph.

	Return type:

	networkx.MultiDiGraph

	
osmnx.truncate.truncate_graph_dist(G, source_node, dist, *, weight='length')

	Remove from a graph every node beyond some network distance from a node.

This function must calculate shortest path distances between source_node
and every other graph node, which can be slow on large graphs.

	Parameters:

	
	G (MultiDiGraph) – Input graph.

	source_node (int) – Node from which to measure network distances to all other nodes.

	dist (float) – Remove every node in the graph that is greater than dist distance
(in same units as weight attribute) along the network from
source_node.

	weight (str) – Graph edge attribute to use to measure distance.

	Returns:

	G – The truncated graph.

	Return type:

	networkx.MultiDiGraph

	
osmnx.truncate.truncate_graph_polygon(G, polygon, *, truncate_by_edge=False)

	Remove from a graph every node that falls outside a (Multi)Polygon.

	Parameters:

	
	G (nx.MultiDiGraph) – Input graph.

	polygon (Polygon | MultiPolygon) – Only retain nodes in graph that lie within this geometry.

	truncate_by_edge (bool) – If True, retain nodes outside boundary polygon if at least one of
node’s neighbors is within the polygon.

	Returns:

	G – The truncated graph.

	Return type:

	nx.MultiDiGraph

osmnx.utils module

General utility functions.

	
osmnx.utils._get_logger(name, filename)

	Create a logger or return the current one if already instantiated.

	Parameters:

	
	name (str) – Name of the logger.

	filename (str) – Name of the log file, without file extension.

	Returns:

	Logger – logger

	Return type:

	Logger

	
osmnx.utils.citation(style='bibtex')

	Print the OSMnx package’s citation information.

Boeing, G. (2024). Modeling and Analyzing Urban Networks and Amenities with
OSMnx. Working paper. https://geoffboeing.com/publications/osmnx-paper/

	Parameters:

	style (str) – {“apa”, “bibtex”, “ieee”}
The citation format, either APA or BibTeX or IEEE.

	Returns:

	None – None

	Return type:

	None

	
osmnx.utils.log(message, level=None, name=None, filename=None)

	Write a message to the logger.

This logs to file and/or prints to the console (terminal), depending on
the current configuration of settings.log_file and
settings.log_console.

	Parameters:

	
	message (str) – The message to log.

	level (int | None) – One of the Python logger.level constants. If None, set to
settings.log_level value.

	name (str | None) – The name of the logger. If None, set to settings.log_name value.

	filename (str | None) – The name of the log file, without file extension. If None, set to
settings.log_filename value.

	Returns:

	None – None

	Return type:

	None

	
osmnx.utils.ts(style='datetime', template=None)

	Return current local timestamp as a string.

	Parameters:

	
	style (str) – {“datetime”, “iso8601”, “date”, “time”}
Format the timestamp with this built-in style.

	template (str | None) – If not None, format the timestamp with this format string instead of
one of the built-in styles.

	Returns:

	str – timestamp

	Return type:

	str

osmnx.utils_geo module

Geospatial utility functions.

	
osmnx.utils_geo._consolidate_subdivide_geometry(geometry)

	Consolidate and subdivide some (projected) geometry.

Consolidate a geometry into a convex hull, then subdivide it into smaller
sub-polygons if its area exceeds max size (in geometry’s units). Configure
the max size via the settings module’s max_query_area_size. Geometries
with areas much larger than max_query_area_size may take a long time to
process.

When the geometry has a very large area relative to its vertex count,
the resulting MultiPolygon’s boundary may differ somewhat from the input,
due to the way long straight lines are projected. You can interpolate
additional vertices along your input geometry’s exterior to mitigate this
if necessary.

	Parameters:

	geometry (Polygon | MultiPolygon) – The projected (in meter units) geometry to consolidate and subdivide.

	Returns:

	MultiPolygon – geometry

	Return type:

	MultiPolygon

	
osmnx.utils_geo._intersect_index_quadrats(geometries, polygon)

	Identify geometries that intersect a (Multi)Polygon.

Uses an r-tree spatial index and cuts polygon up into smaller sub-polygons
for r-tree acceleration. Ensure that geometries and polygon are in the
same coordinate reference system.

	Parameters:

	
	geometries (gpd.GeoSeries) – The geometries to intersect with the polygon.

	polygon (Polygon | MultiPolygon) – The polygon to intersect with the geometries.

	Returns:

	geoms_in_poly – The index labels of the geometries that intersected the polygon.

	Return type:

	set[Any]

	
osmnx.utils_geo._quadrat_cut_geometry(geometry, quadrat_width)

	Split a Polygon or MultiPolygon up into sub-polygons of a specified size.

	Parameters:

	
	geometry (Polygon | MultiPolygon) – The geometry to split up into smaller sub-polygons.

	quadrat_width (float) – Width (in geometry’s units) of quadrat squares with which to split up
the geometry.

	Returns:

	MultiPolygon – geometry

	Return type:

	MultiPolygon

	
osmnx.utils_geo.bbox_from_point(point, dist, *, project_utm=False, return_crs=False)

	Create a bounding box around a (lat, lon) point.

Create a bounding box some distance (in meters) in each direction (north,
south, east, and west) from the center point and optionally project it.

	Parameters:

	
	point (tuple[float, float]) – The (lat, lon) center point to create the bounding box around.

	dist (float) – Bounding box distance in meters from the center point.

	project_utm (bool) – If True, return bounding box as UTM-projected coordinates.

	return_crs (bool) – If True, and project_utm is True, then return the projected CRS too.

	Returns:

	bbox or bbox, crs – (north, south, east, west) or ((north, south, east, west), crs).

	Return type:

	tuple[float, float, float, float] | tuple[tuple[float, float, float, float], Any]

	
osmnx.utils_geo.bbox_to_poly(bbox)

	Convert bounding box coordinates to Shapely Polygon.

	Parameters:

	bbox (tuple[float, float, float, float]) – Bounding box as (north, south, east, west).

	Returns:

	Polygon – polygon

	Return type:

	shapely.Polygon

	
osmnx.utils_geo.interpolate_points(geom, dist)

	Interpolate evenly spaced points along a LineString.

The spacing is approximate because the LineString’s length may not be
evenly divisible by it.

	Parameters:

	
	geom (LineString) – A LineString geometry.

	dist (float) – Spacing distance between interpolated points, in same units as geom.
Smaller values accordingly generate more points.

	Yields:

	point – Interpolated point’s (x, y) coordinates.

	Return type:

	Iterator[tuple[float, float]]

	
osmnx.utils_geo.sample_points(G, n)

	Randomly sample points constrained to a spatial graph.

This generates a graph-constrained uniform random sample of points. Unlike
typical spatially uniform random sampling, this method accounts for the
graph’s geometry. And unlike equal-length edge segmenting, this method
guarantees uniform randomness.

	Parameters:

	
	G (MultiGraph) – Graph from which to sample points. Should be undirected (to avoid
oversampling bidirectional edges) and projected (for accurate point
interpolation).

	n (int) – How many points to sample.

	Returns:

	point – The sampled points, multi-indexed by (u, v, key) of the edge from
which each point was sampled.

	Return type:

	geopandas.GeoSeries

osmnx._version module

OSMnx package version information.

Further Reading

Boeing, G. (2024). Modeling and Analyzing Urban Networks and Amenities with OSMnx [https://geoffboeing.com/publications/osmnx-paper/]. Working paper. https://geoffboeing.com/publications/osmnx-paper/

This is the official citation for the project.

Boeing, G. (2021). Street Network Models and Indicators for Every Urban Area in the World [https://geoffboeing.com/publications/street-network-models-indicators-world/]. Geographical Analysis 54 (3), 519-535.

This study uses OSMnx to model and analyze the street networks of every urban area in the world: over 160 million OpenStreetMap street network nodes and over 320 million edges across 8,914 urban areas in 178 countries.

Boeing, G. (2020). The Right Tools for the Job: The Case for Spatial Science Tool-Building [https://geoffboeing.com/publications/right-tools-for-job/]. Transactions in GIS 24 (5), 1299-1314.

This paper was presented as the 8th annual Transactions in GIS plenary address at the American Association of Geographers annual meeting in Washington, DC. It describes the development of OSMnx and reviews its use in scientific research over the previous few years.

Boeing, G. (2020). Planarity and Street Network Representation in Urban Form Analysis [https://geoffboeing.com/publications/planarity-street-network-representation/]. Environment and Planning B: Urban Analytics and City Science 47 (5), 855-869.

This paper discusses the importance of using nonplanar graphs when modeling urban street networks, which was one of the original motivations for developing OSMnx.

 Python Module Index

 o

 		 	

 		
 o	

 	[image: -]
 	
 osmnx	

 	
 	
 osmnx.bearing	

 	
 	
 osmnx.convert	

 	
 	
 osmnx.distance	

 	
 	
 osmnx.elevation	

 	
 	
 osmnx.features	

 	
 	
 osmnx.geocoder	

 	
 	
 osmnx.graph	

 	
 	
 osmnx.io	

 	
 	
 osmnx.plot	

 	
 	
 osmnx.projection	

 	
 	
 osmnx.routing	

 	
 	
 osmnx.settings	

 	
 	
 osmnx.simplification	

 	
 	
 osmnx.stats	

 	
 	
 osmnx.truncate	

 	
 	
 osmnx.utils	

 	
 	
 osmnx.utils_geo	

Index

 A
 | B
 | C
 | E
 | F
 | G
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T

A

 	
 	add_edge_bearings() (in module osmnx.bearing)

 	add_edge_grades() (in module osmnx.elevation)

 	add_edge_lengths() (in module osmnx.distance)

 	
 	add_edge_speeds() (in module osmnx.routing)

 	add_edge_travel_times() (in module osmnx.routing)

 	add_node_elevations_google() (in module osmnx.elevation)

 	add_node_elevations_raster() (in module osmnx.elevation)

B

 	
 	basic_stats() (in module osmnx.stats)

 	
 	bbox_from_point() (in module osmnx.utils_geo)

 	bbox_to_poly() (in module osmnx.utils_geo)

C

 	
 	calculate_bearing() (in module osmnx.bearing)

 	circuity_avg() (in module osmnx.stats)

 	
 	citation() (in module osmnx.utils)

 	consolidate_intersections() (in module osmnx.simplification)

 	count_streets_per_node() (in module osmnx.stats)

E

 	
 	edge_length_total() (in module osmnx.stats)

 	
 	euclidean() (in module osmnx.distance)

F

 	
 	features_from_address() (in module osmnx.features)

 	features_from_bbox() (in module osmnx.features)

 	features_from_place() (in module osmnx.features)

 	
 	features_from_point() (in module osmnx.features)

 	features_from_polygon() (in module osmnx.features)

 	features_from_xml() (in module osmnx.features)

G

 	
 	geocode() (in module osmnx.geocoder)

 	geocode_to_gdf() (in module osmnx.geocoder)

 	get_colors() (in module osmnx.plot)

 	get_edge_colors_by_attr() (in module osmnx.plot)

 	get_node_colors_by_attr() (in module osmnx.plot)

 	graph_from_address() (in module osmnx.graph)

 	graph_from_bbox() (in module osmnx.graph)

 	
 	graph_from_gdfs() (in module osmnx.convert)

 	graph_from_place() (in module osmnx.graph)

 	graph_from_point() (in module osmnx.graph)

 	graph_from_polygon() (in module osmnx.graph)

 	graph_from_xml() (in module osmnx.graph)

 	graph_to_gdfs() (in module osmnx.convert)

 	great_circle() (in module osmnx.distance)

I

 	
 	interpolate_points() (in module osmnx.utils_geo)

 	
 	intersection_count() (in module osmnx.stats)

 	is_projected() (in module osmnx.projection)

K

 	
 	k_shortest_paths() (in module osmnx.routing)

L

 	
 	largest_component() (in module osmnx.truncate)

 	
 	load_graphml() (in module osmnx.io)

 	log() (in module osmnx.utils)

M

 	
 	
 module

 	osmnx.bearing

 	osmnx.convert

 	osmnx.distance

 	osmnx.elevation

 	osmnx.features

 	osmnx.geocoder

 	osmnx.graph

 	osmnx.io

 	osmnx.plot

 	osmnx.projection

 	osmnx.routing

 	osmnx.settings

 	osmnx.simplification

 	osmnx.stats

 	osmnx.truncate

 	osmnx.utils

 	osmnx.utils_geo

N

 	
 	nearest_edges() (in module osmnx.distance)

 	
 	nearest_nodes() (in module osmnx.distance)

O

 	
 	orientation_entropy() (in module osmnx.bearing)

 	
 osmnx.bearing

 	module

 	
 osmnx.convert

 	module

 	
 osmnx.distance

 	module

 	
 osmnx.elevation

 	module

 	
 osmnx.features

 	module

 	
 osmnx.geocoder

 	module

 	
 osmnx.graph

 	module

 	
 osmnx.io

 	module

 	
 	
 osmnx.plot

 	module

 	
 osmnx.projection

 	module

 	
 osmnx.routing

 	module

 	
 osmnx.settings

 	module

 	
 osmnx.simplification

 	module

 	
 osmnx.stats

 	module

 	
 osmnx.truncate

 	module

 	
 osmnx.utils

 	module

 	
 osmnx.utils_geo

 	module

P

 	
 	plot_figure_ground() (in module osmnx.plot)

 	plot_footprints() (in module osmnx.plot)

 	plot_graph() (in module osmnx.plot)

 	plot_graph_route() (in module osmnx.plot)

 	
 	plot_graph_routes() (in module osmnx.plot)

 	plot_orientation() (in module osmnx.plot)

 	project_gdf() (in module osmnx.projection)

 	project_geometry() (in module osmnx.projection)

 	project_graph() (in module osmnx.projection)

R

 	
 	route_to_gdf() (in module osmnx.routing)

S

 	
 	sample_points() (in module osmnx.utils_geo)

 	save_graph_geopackage() (in module osmnx.io)

 	save_graph_xml() (in module osmnx.io)

 	save_graphml() (in module osmnx.io)

 	self_loop_proportion() (in module osmnx.stats)

 	shortest_path() (in module osmnx.routing)

 	
 	simplify_graph() (in module osmnx.simplification)

 	street_length_total() (in module osmnx.stats)

 	street_segment_count() (in module osmnx.stats)

 	streets_per_node() (in module osmnx.stats)

 	streets_per_node_avg() (in module osmnx.stats)

 	streets_per_node_counts() (in module osmnx.stats)

 	streets_per_node_proportions() (in module osmnx.stats)

T

 	
 	to_digraph() (in module osmnx.convert)

 	to_undirected() (in module osmnx.convert)

 	truncate_graph_bbox() (in module osmnx.truncate)

 	
 	truncate_graph_dist() (in module osmnx.truncate)

 	truncate_graph_polygon() (in module osmnx.truncate)

 	ts() (in module osmnx.utils)

 nav.xhtml

 Table of Contents

 		
 OSMnx 2.0.0-dev

 		
 Getting Started

 		
 Get Started in 4 Steps

 		
 Introducing OSMnx

 		
 Overview

 		
 Configuration

 		
 Geocoding and Querying

 		
 Urban Amenities

 		
 Modeling a Network

 		
 Topology Clean-Up

 		
 Converting, Projecting, Saving

 		
 Working with Elevation

 		
 Network Measures

 		
 Routing

 		
 Visualization

 		
 More Info

 		
 Frequently Asked Questions

 		
 Installation

 		
 Conda

 		
 Docker

 		
 Pip

 		
 User Reference

 		
 osmnx.bearing module

 		
 add_edge_bearings()

 		
 calculate_bearing()

 		
 orientation_entropy()

 		
 osmnx.convert module

 		
 graph_from_gdfs()

 		
 graph_to_gdfs()

 		
 to_digraph()

 		
 to_undirected()

 		
 osmnx.distance module

 		
 add_edge_lengths()

 		
 euclidean()

 		
 great_circle()

 		
 nearest_edges()

 		
 nearest_nodes()

 		
 osmnx.elevation module

 		
 add_edge_grades()

 		
 add_node_elevations_google()

 		
 add_node_elevations_raster()

 		
 osmnx.features module

 		
 features_from_address()

 		
 features_from_bbox()

 		
 features_from_place()

 		
 features_from_point()

 		
 features_from_polygon()

 		
 features_from_xml()

 		
 osmnx.geocoder module

 		
 geocode()

 		
 geocode_to_gdf()

 		
 osmnx.graph module

 		
 graph_from_address()

 		
 graph_from_bbox()

 		
 graph_from_place()

 		
 graph_from_point()

 		
 graph_from_polygon()

 		
 graph_from_xml()

 		
 osmnx.io module

 		
 load_graphml()

 		
 save_graph_geopackage()

 		
 save_graph_xml()

 		
 save_graphml()

 		
 osmnx.plot module

 		
 get_colors()

 		
 get_edge_colors_by_attr()

 		
 get_node_colors_by_attr()

 		
 plot_figure_ground()

 		
 plot_footprints()

 		
 plot_graph()

 		
 plot_graph_route()

 		
 plot_graph_routes()

 		
 plot_orientation()

 		
 osmnx.projection module

 		
 is_projected()

 		
 project_gdf()

 		
 project_geometry()

 		
 project_graph()

 		
 osmnx.routing module

 		
 add_edge_speeds()

 		
 add_edge_travel_times()

 		
 k_shortest_paths()

 		
 route_to_gdf()

 		
 shortest_path()

 		
 osmnx.settings module

 		
 osmnx.simplification module

 		
 consolidate_intersections()

 		
 simplify_graph()

 		
 osmnx.stats module

 		
 basic_stats()

 		
 circuity_avg()

 		
 count_streets_per_node()

 		
 edge_length_total()

 		
 intersection_count()

 		
 self_loop_proportion()

 		
 street_length_total()

 		
 street_segment_count()

 		
 streets_per_node()

 		
 streets_per_node_avg()

 		
 streets_per_node_counts()

 		
 streets_per_node_proportions()

 		
 osmnx.truncate module

 		
 largest_component()

 		
 truncate_graph_bbox()

 		
 truncate_graph_dist()

 		
 truncate_graph_polygon()

 		
 osmnx.utils module

 		
 citation()

 		
 log()

 		
 ts()

 		
 osmnx.utils_geo module

 		
 bbox_from_point()

 		
 bbox_to_poly()

 		
 interpolate_points()

 		
 sample_points()

 		
 Internals Reference

 		
 osmnx.bearing module

 		
 osmnx.convert module

 		
 osmnx.distance module

 		
 osmnx.elevation module

 		
 osmnx._errors module

 		
 osmnx.features module

 		
 osmnx.geocoder module

 		
 osmnx.graph module

 		
 osmnx._http module

 		
 osmnx.io module

 		
 osmnx._nominatim module

 		
 osmnx._osm_xml module

 		
 osmnx._overpass module

 		
 osmnx.plot module

 		
 osmnx.projection module

 		
 osmnx.routing module

 		
 osmnx.settings module

 		
 osmnx.simplification module

 		
 osmnx.stats module

 		
 osmnx.truncate module

 		
 osmnx.utils module

 		
 osmnx.utils_geo module

 		
 osmnx._version module

 		
 Further Reading

_static/plus.png

_static/file.png

_static/minus.png

