
OSMnx
Release 2.0.0-dev

Geoff Boeing

May 01, 2024

CONTENTS

1 Citation 3

2 Getting Started 5

3 Installation 7

4 Support 9

5 License 11

6 Documentation 13

7 Indices 113

Python Module Index 115

Index 117

i

ii

OSMnx, Release 2.0.0-dev

OSMnx is a Python package to easily download, model, analyze, and visualize street networks and other geospatial
features from OpenStreetMap. You can download and model walking, driving, or biking networks with a single line
of code then analyze and visualize them. You can just as easily work with urban amenities/points of interest, building
footprints, transit stops, elevation data, street orientations, speed/travel time, and routing.

OSMnx 2.0 is in beta: read the migration guide.

CONTENTS 1

https://github.com/gboeing/osmnx/issues/1123

OSMnx, Release 2.0.0-dev

2 CONTENTS

CHAPTER

ONE

CITATION

If you use OSMnx in your work, please cite the paper:

Boeing, G. (2024). Modeling and Analyzing Urban Networks and Amenities with OSMnx. Working paper. https:
//geoffboeing.com/publications/osmnx-paper/

3

https://geoffboeing.com/publications/osmnx-paper/
https://geoffboeing.com/publications/osmnx-paper/
https://geoffboeing.com/publications/osmnx-paper/

OSMnx, Release 2.0.0-dev

4 Chapter 1. Citation

CHAPTER

TWO

GETTING STARTED

First read the Getting Started guide for an introduction to the package and FAQ.

Then work through the OSMnx Examples Gallery for step-by-step tutorials and sample code.

5

https://github.com/gboeing/osmnx-examples

OSMnx, Release 2.0.0-dev

6 Chapter 2. Getting Started

CHAPTER

THREE

INSTALLATION

Follow the Installation guide to install OSMnx.

7

OSMnx, Release 2.0.0-dev

8 Chapter 3. Installation

CHAPTER

FOUR

SUPPORT

If you have any trouble, consult the User Reference. The OSMnx repository is hosted on GitHub. If you have a “how-
to” or usage question, please ask it on StackOverflow, as we reserve the repository’s issue tracker for bug tracking and
feature development.

9

https://github.com/gboeing/osmnx
https://stackoverflow.com/search?q=osmnx

OSMnx, Release 2.0.0-dev

10 Chapter 4. Support

CHAPTER

FIVE

LICENSE

OSMnx is open source and licensed under the MIT license. OpenStreetMap’s open data license requires that derivative
works provide proper attribution. Refer to the Getting Started guide for usage limitations.

11

https://www.openstreetmap.org/copyright

OSMnx, Release 2.0.0-dev

12 Chapter 5. License

CHAPTER

SIX

DOCUMENTATION

6.1 Getting Started

6.1.1 Get Started in 4 Steps

1. Install OSMnx by following the Installation guide.

2. Read “Introducing OSMnx” below on this page.

3. Work through the OSMnx Examples Gallery for step-by-step tutorials and sample code.

4. Consult the User Reference for complete details on using the package.

Finally, if you’re not already familiar with NetworkX and GeoPandas, make sure you read their user guides as OSMnx
uses their data structures and functionality.

6.1.2 Introducing OSMnx

This quick introduction explains key concepts and the basic functionality of OSMnx.

Overview

OSMnx is pronounced as the initialism: “oh-ess-em-en-ex”. It is built on top of NetworkX and GeoPandas, and interacts
with OpenStreetMap APIs to:

• Download and model street networks or other infrastructure anywhere in the world with a single line of code

• Download geospatial features (e.g., political boundaries, building footprints, grocery stores, transit stops) as a
GeoDataFrame

• Query by city name, polygon, bounding box, or point/address + distance

• Model driving, walking, biking, and other travel modes

• Attach node elevations from a local raster file or web service and calculate edge grades

• Impute missing speeds and calculate graph edge travel times

• Simplify and correct the network’s topology to clean-up nodes and consolidate complex intersections

• Fast map-matching of points, routes, or trajectories to nearest graph edges or nodes

• Save/load network to/from disk as GraphML, GeoPackage, or OSM XML file

• Conduct topological and spatial analyses to automatically calculate dozens of indicators

• Calculate and visualize street bearings and orientations

13

https://github.com/gboeing/osmnx-examples
https://networkx.org
https://geopandas.org
https://www.openstreetmap.org

OSMnx, Release 2.0.0-dev

• Calculate and visualize shortest-path routes that minimize distance, travel time, elevation, etc

• Explore street networks and geospatial features as a static map or interactive web map

• Visualize travel distance and travel time with isoline and isochrone maps

• Plot figure-ground diagrams of street networks and building footprints

The OSMnx Examples Gallery contains tutorials and demonstrations of all these features, and package usage is detailed
in the User Reference.

Configuration

You can configure OSMnx using the settings module. Here you can adjust logging behavior, caching, server end-
points, and more. You can also configure OSMnx to retrieve historical snapshots of OpenStreetMap data as of a certain
date. Refer to the FAQ below for server usage limitations.

Geocoding and Querying

OSMnx geocodes place names and addresses with the OpenStreetMap Nominatim API. You can use the geocoder
module to geocode place names or addresses to lat-lon coordinates. Or, you can retrieve place boundaries or any other
OpenStreetMap elements by name or ID.

Using the features and graphmodules, as described below, you can download data by lat-lon point, address, bound-
ing box, bounding polygon, or place name (e.g., neighborhood, city, county, etc).

Urban Amenities

Using OSMnx’s features module, you can search for and download geospatial features (such as building footprints,
grocery stores, schools, public parks, transit stops, etc) from the OpenStreetMap Overpass API as a GeoPandas Geo-
DataFrame. This uses OpenStreetMap tags to search for matching elements.

Modeling a Network

Using OSMnx’s graphmodule, you can retrieve any spatial network data (such as streets, paths, rail, canals, etc) from
the Overpass API and model them as NetworkX MultiDiGraphs.

MultiDiGraphs are nonplanar directed graphs with possible self-loops and parallel edges. Thus, a one-way street will
be represented with a single directed edge from node u to node v, but a bidirectional street will be represented with
two reciprocal directed edges (with identical geometries): one from node u to node v and another from v to u, to
represent both possible directions of flow. Because these graphs are nonplanar, they correctly model the topology
of interchanges, bridges, and tunnels. That is, edge crossings in a two-dimensional plane are not intersections in an
OSMnx model unless they represent true junctions in the three-dimensional real world.

The graph module uses filters to query the Overpass API: you can either specify a built-in network type or provide
your own custom filter with Overpass QL. Refer to the graph module’s documentation for more details. Under the
hood, OSMnx does several things to generate the best possible model. It initially creates a 500m-buffered graph before
truncating it to your desired query area, to ensure accurate streets-per-node stats and to attenuate graph perimeter effects.
It also simplifies the graph topology as discussed below.

14 Chapter 6. Documentation

https://github.com/gboeing/osmnx-examples
https://nominatim.org
https://wiki.openstreetmap.org/wiki/Map_features
https://wiki.openstreetmap.org/wiki/Overpass_API
https://wiki.openstreetmap.org/wiki/Tags
https://wiki.openstreetmap.org/wiki/Elements
https://networkx.org/documentation/stable/reference/classes/multidigraph.html
https://wiki.openstreetmap.org/wiki/Overpass_API/Overpass_QL

OSMnx, Release 2.0.0-dev

Topology Clean-Up

The simplification module automatically processes the network’s topology from the original raw OpenStreetMap
data, such that nodes represent intersections/dead-ends and edges represent the street segments that link them. This
takes two primary forms: graph simplification and intersection consolidation.

Graph simplification cleans up the graph’s topology so that nodes represent intersections or dead-ends and edges
represent street segments. This is important because in OpenStreetMap raw data, ways comprise sets of straight-line
segments between nodes: that is, nodes are vertices for streets’ curving line geometries, not just intersections and dead-
ends. By default, OSMnx simplifies this topology by discarding non-intersection/dead-end nodes while retaining the
complete true edge geometry as an edge attribute. When multiple OpenStreetMap ways are merged into a single graph
edge, the ways’ attribute values can be aggregated into a single value.

Intersection consolidation is important because many real-world street networks feature complex intersections and
traffic circles, resulting in a cluster of graph nodes where there is really just one true intersection as we would think
of it in transportation or urban design. Similarly, divided roads are often represented by separate centerline edges: the
intersection of two divided roads thus creates 4 nodes, representing where each edge intersects a perpendicular edge,
but these 4 nodes represent a single intersection in the real world. OSMnx can consolidate such complex intersections
into a single node and optionally rebuild the graph’s edge topology accordingly. When multiple OpenStreetMap nodes
are merged into a single graph node, the nodes’ attribute values can be aggregated into a single value.

Converting, Projecting, Saving

OSMnx’s convert module can convert a MultiDiGraph to a MultiGraph if you prefer an undirected representation
of the network, or to a DiGraph if you prefer a directed representation without any parallel edges. It can also convert
a MultiDiGraph to/from GeoPandas node and edge GeoDataFrames. The nodes GeoDataFrame is indexed by OSM
ID and the edges GeoDataFrame is multi-indexed by u, v, key just like a NetworkX edge. This allows you to load
arbitrary node/edge ShapeFiles or GeoPackage layers as GeoDataFrames then model them as a MultiDiGraph for graph
analysis.

You can easily project your graph to different coordinate reference systems using the projection module. If you’re
unsure which CRS you want to project to, OSMnx can automatically determine an appropriate UTM CRS for you.

Using the iomodule, you can save your graph to disk as a GraphML file (to load into other network analysis software),
a GeoPackage (to load into other GIS software), or an OSM XML file. Use the GraphML format whenever saving a
graph for later work with OSMnx.

Working with Elevation

The elevation module lets you automatically attach elevations to the graph’s nodes from a local raster file or a web
service like the Google Maps Elevation API. You can also calculate edge grades (i.e., rise-over-run) and analyze the
steepness of certain streets or routes.

Network Measures

You can use the stats module to calculate a variety of geometric and topological measures as well as street network
bearing and orientation statistics. These measures define streets as the edges in an undirected representation of the
graph to prevent double-counting bidirectional edges of a two-way street. You can easily generate common stats in
transportation studies, urban design, and network science, including intersection density, circuity, average node degree
(connectedness), betweenness centrality, and much more.

You can also use NetworkX directly to calculate additional topological network measures.

6.1. Getting Started 15

https://networkx.org/documentation/stable/reference/classes/multigraph.html
https://networkx.org/documentation/stable/reference/classes/digraph.html
https://geopandas.org/en/stable/docs/reference/geodataframe.html
https://en.wikipedia.org/wiki/Coordinate_reference_system
https://developers.google.com/maps/documentation/elevation

OSMnx, Release 2.0.0-dev

Routing

The distance module can find the nearest node(s) or edge(s) to coordinates using a fast spatial index. The routing
module can solve shortest paths for network routing, parallelized with multiprocessing, using different weights (e.g.,
distance, travel time, elevation change, etc). It can also impute missing speeds to the graph edges. This imputation can
obviously be imprecise, so the user can override it by passing in arguments that define local speed limits. It can also
calculate free-flow travel times for each edge.

Visualization

You can plot graphs, routes, network figure-ground diagrams, building footprints, and street network orientation rose
diagrams (aka, polar histograms) with the plot module. You can also explore street networks, routes, or geospatial
features as interactive Folium web maps.

6.1.3 More Info

All of this functionality is demonstrated step-by-step in the OSMnx Examples Gallery, and usage is detailed in the
User Reference. More feature development details are in the Changelog. Consult the Further Reading resources for
additional technical details and research.

6.1.4 Frequently Asked Questions

How do I install OSMnx? Follow the Installation guide.

How do I use OSMnx? Check out the step-by-step tutorials in the OSMnx Examples Gallery.

How does this or that function work? Consult the User Reference.

What can I do with OSMnx? Check out recent projects that use OSMnx.

I have a usage question. Please ask it on StackOverflow.

Are there any usage limitations? Yes. Refer to the Nominatim Usage Policy and Overpass Commons documentation
for usage limitations and restrictions that you must adhere to at all times. If you use an alternative Nominatim/Overpass
instance, ensure you understand and obey their usage policies. If you need to exceed these limitations, consider installing
your own hosted instance and setting OSMnx to use it.

6.2 Installation

6.2.1 Conda

The official supported way to install OSMnx is with conda:

conda create -n ox -c conda-forge --strict-channel-priority osmnx

This creates a new conda environment and installs OSMnx into it, via the conda-forge channel. If you want other
packages, such as jupyterlab, installed in this environment as well, just add their names after osmnx above.

To upgrade OSMnx to a newer release, remove the conda environment you created and then create a new one again, as
above. Don’t just run “conda update” or you could get package conflicts. See the conda and conda-forge documentation
for more details.

16 Chapter 6. Documentation

https://python-visualization.github.io/folium/
https://github.com/gboeing/osmnx-examples
https://github.com/gboeing/osmnx/blob/main/CHANGELOG.md
https://github.com/gboeing/osmnx-examples
https://geoffboeing.com/2018/03/osmnx-features-roundup
https://stackoverflow.com/search?q=osmnx
https://operations.osmfoundation.org/policies/nominatim/
https://dev.overpass-api.de/overpass-doc/en/preface/commons.html
https://conda.io/
https://conda-forge.org/

OSMnx, Release 2.0.0-dev

6.2.2 Docker

You can run OSMnx + JupyterLab directly from the official OSMnx Docker image.

6.2.3 Pip

You may be able to install OSMnx with pip but this is not officially supported. OSMnx is written in pure Python and its
installation alone is thus trivially simple if you already have all of its dependencies installed and tested on your system.
OSMnx depends on other packages written in C, and installing those dependencies with pip is sometimes challenging
depending on your specific system’s configuration. Therefore, if you’re not sure what you’re doing, just follow the
conda instructions above to avoid installation problems.

6.3 User Reference

This is the User Reference for the OSMnx package. If you are looking for an introduction to OSMnx, read the Getting
Started guide. This guide describes the usage of OSMnx’s public API.

OSMnx 2.0 is in beta: read the migration guide.

6.3.1 osmnx.bearing module

Calculate graph edge bearings and orientation entropy.

osmnx.bearing.add_edge_bearings(G)
Calculate and add compass bearing attributes to all graph edges.

Vectorized function to calculate (initial) bearing from origin node to destination node for each edge in a directed,
unprojected graph then add these bearings as new bearing edge attributes. Bearing represents angle in degrees
(clockwise) between north and the geodesic line from the origin node to the destination node. Ignores self-loop
edges as their bearings are undefined.

Parameters
G (MultiDiGraph) – Unprojected graph.

Returns
G – Graph with bearing attributes on the edges.

Return type
networkx.MultiDiGraph

osmnx.bearing.calculate_bearing(lat1, lon1, lat2, lon2)
Calculate the compass bearing(s) between pairs of lat-lon points.

Vectorized function to calculate initial bearings between two points’ coordinates or between arrays of points’
coordinates. Expects coordinates in decimal degrees. The bearing represents the clockwise angle in degrees
between north and the geodesic line from (lat1, lon1) to (lat2, lon2).

Parameters

• lat1 (float | npt.NDArray[np.float64]) – First point’s latitude coordinate(s).

• lon1 (float | npt.NDArray[np.float64]) – First point’s longitude coordinate(s).

• lat2 (float | npt.NDArray[np.float64]) – Second point’s latitude coordinate(s).

• lon2 (float | npt.NDArray[np.float64]) – Second point’s longitude coordinate(s).

6.3. User Reference 17

https://hub.docker.com/r/gboeing/osmnx
https://pypi.org/project/osmnx/
https://github.com/gboeing/osmnx/issues/1123

OSMnx, Release 2.0.0-dev

Returns
bearing – The bearing(s) in decimal degrees.

Return type
float | npt.NDArray[np.float64]

osmnx.bearing.orientation_entropy(G, *, num_bins=36, min_length=0, weight=None)
Calculate graph’s orientation entropy.

Orientation entropy is the Shannon entropy of the graphs’ edges’ bearings across evenly spaced bins. Ignores
self-loop edges as their bearings are undefined. If G is a MultiGraph, all edge bearings will be bidirectional (ie,
two reciprocal bearings per undirected edge). If G is a MultiDiGraph, all edge bearings will be directional (ie,
one bearing per directed edge).

For more info see: Boeing, G. 2019. “Urban Spatial Order: Street Network Orientation, Configuration, and
Entropy.” Applied Network Science, 4 (1), 67. https://doi.org/10.1007/s41109-019-0189-1

Parameters

• G (nx.MultiGraph | nx.MultiDiGraph) – Unprojected graph with bearing attributes on each
edge.

• num_bins (int) – Number of bins. For example, if num_bins=36 is provided, then each bin
will represent 10 degrees around the compass.

• min_length (float) – Ignore edges with “length” attributes less than min_length. Useful to
ignore the noise of many very short edges.

• weight (str | None) – If None, apply equal weight for each bearing. Otherwise, weight edges’
bearings by this (non-null) edge attribute. For example, if “length” is provided, each edge’s
bearing observation will be weighted by its “length” attribute value.

Returns
entropy – The orientation entropy of G.

Return type
float

6.3.2 osmnx.convert module

Convert spatial graphs to/from different data types.

osmnx.convert.graph_from_gdfs(gdf_nodes, gdf_edges, *, graph_attrs=None)
Convert node and edge GeoDataFrames to a MultiDiGraph.

This function is the inverse of graph_to_gdfs and is designed to work in conjunction with it. However, you
can convert arbitrary node and edge GeoDataFrames as long as 1) gdf_nodes is uniquely indexed by osmid, 2)
gdf_nodes contains x and y coordinate columns representing node geometries, 3) gdf_edges is uniquely multi-
indexed by (u, v, key) (following normal MultiDiGraph structure). This allows you to load any node/edge Shape-
files or GeoPackage layers as GeoDataFrames then convert them to a MultiDiGraph for network analysis.

Note that any geometry attribute on gdf_nodes is discarded, since x and y provide the necessary node geometry
information instead.

Parameters

• gdf_nodes (GeoDataFrame) – GeoDataFrame of graph nodes uniquely indexed by osmid.

• gdf_edges (GeoDataFrame) – GeoDataFrame of graph edges uniquely multi-indexed by
(u, v, key).

18 Chapter 6. Documentation

https://doi.org/10.1007/s41109-019-0189-1

OSMnx, Release 2.0.0-dev

• graph_attrs (dict[str, Any] | None) – The new G.graph attribute dictionary. If None,
use gdf_edges’s CRS as the only graph-level attribute (gdf_edges must have its crs attribute
set).

Returns
MultiDiGraph – G

Return type
networkx.MultiDiGraph

osmnx.convert.graph_to_gdfs(G, *, nodes=True, edges=True, node_geometry=True,
fill_edge_geometry=True)

Convert a MultiGraph or MultiDiGraph to node and/or edge GeoDataFrames.

This function is the inverse of graph_from_gdfs.

Parameters

• G (nx.MultiGraph | nx.MultiDiGraph) – Input graph.

• nodes (bool) – If True, convert graph nodes to a GeoDataFrame and return it.

• edges (bool) – If True, convert graph edges to a GeoDataFrame and return it.

• node_geometry (bool) – If True, create a geometry column from node “x” and “y” at-
tributes.

• fill_edge_geometry (bool) – If True, fill missing edge geometry fields using endpoint
nodes’ coordinates to create a LineString.

Returns
gdf_nodes or gdf_edges or (gdf_nodes, gdf_edges) – gdf_nodes is indexed by osmid and
gdf_edges is multi-indexed by (u, v, key) following normal MultiGraph/MultiDiGraph structure.

Return type
gpd.GeoDataFrame | tuple[gpd.GeoDataFrame, gpd.GeoDataFrame]

osmnx.convert.to_digraph(G, *, weight='length')
Convert MultiDiGraph to DiGraph.

Chooses between parallel edges by minimizing weight attribute value. See also to_undirected to convert Multi-
DiGraph to MultiGraph.

Parameters

• G (MultiDiGraph) – Input graph.

• weight (str) – Attribute value to minimize when choosing between parallel edges.

Returns
DiGraph – G

Return type
networkx.DiGraph

osmnx.convert.to_undirected(G)
Convert MultiDiGraph to undirected MultiGraph.

Maintains parallel edges only if their geometries differ. See also to_digraph to convert MultiDiGraph to DiGraph.

Parameters
G (MultiDiGraph) – Input graph.

Returns
MultiGraph – Gu

6.3. User Reference 19

OSMnx, Release 2.0.0-dev

Return type
networkx.MultiGraph

6.3.3 osmnx.distance module

Calculate distances and find nearest graph node/edge(s) to point(s).

osmnx.distance.add_edge_lengths(G, *, edges=None)
Calculate and add length attribute (in meters) to each edge.

Vectorized function to calculate great-circle distance between each edge’s incident nodes. Ensure graph is un-
projected and unsimplified to calculate accurate distances.

Note: this function is run by all the graph.graph_from_x functions automatically to add length attributes to all
edges. It calculates edge lengths as the great-circle distance from node u to node v. When OSMnx automatically
runs this function upon graph creation, it does it before simplifying the graph: thus it calculates the straight-line
lengths of edge segments that are themselves all straight. Only after simplification do edges take on (potentially)
curvilinear geometry. If you wish to calculate edge lengths later, note that you will be calculating straight-line
distances which necessarily ignore the curvilinear geometry. Thus you only want to run this function on a graph
with all straight edges (such as is the case with an unsimplified graph).

Parameters

• G (MultiDiGraph) – Unprojected and unsimplified input graph.

• edges (Iterable[tuple[int, int, int]] | None) – The subset of edges to add length at-
tributes to, as (u, v, k) tuples. If None, add lengths to all edges.

Returns
G – Graph with length attributes on the edges.

Return type
networkx.MultiDiGraph

osmnx.distance.euclidean(y1, x1, y2, x2)
Calculate Euclidean distances between pairs of points.

Vectorized function to calculate the Euclidean distance between two points’ coordinates or between arrays of
points’ coordinates. For accurate results, use projected coordinates rather than decimal degrees.

Parameters

• y1 (float | npt.NDArray[np.float64]) – First point’s y coordinate(s).

• x1 (float | npt.NDArray[np.float64]) – First point’s x coordinate(s).

• y2 (float | npt.NDArray[np.float64]) – Second point’s y coordinate(s).

• x2 (float | npt.NDArray[np.float64]) – Second point’s x coordinate(s).

Returns
dist – Distance from each (x1, y1) point to each (x2, y2) point in same units as the points’ coor-
dinates.

Return type
float | npt.NDArray[np.float64]

osmnx.distance.great_circle(lat1, lon1, lat2, lon2, earth_radius=6371009)
Calculate great-circle distances between pairs of points.

Vectorized function to calculate the great-circle distance between two points’ coordinates or between arrays of
points’ coordinates using the haversine formula. Expects coordinates in decimal degrees.

20 Chapter 6. Documentation

OSMnx, Release 2.0.0-dev

Parameters

• lat1 (float | npt.NDArray[np.float64]) – First point’s latitude coordinate(s).

• lon1 (float | npt.NDArray[np.float64]) – First point’s longitude coordinate(s).

• lat2 (float | npt.NDArray[np.float64]) – Second point’s latitude coordinate(s).

• lon2 (float | npt.NDArray[np.float64]) – Second point’s longitude coordinate(s).

• earth_radius (float) – Earth’s radius in units in which distance will be returned (default
represents meters).

Returns
dist – Distance from each (lat1, lon1) point to each (lat2, lon2) point in units of earth_radius.

Return type
float | npt.NDArray[np.float64]

osmnx.distance.nearest_edges(G, X, Y , *, return_dist=False)
Find the nearest edge to a point or to each of several points.

If X and Y are single coordinate values, this will return the nearest edge to that point. If X and Y are iterables of
coordinate values, this will return the nearest edge to each point. This uses an R-tree spatial index and minimizes
the Euclidean distance from each point to the possible matches. For accurate results, use a projected graph and
points.

Parameters

• G (nx.MultiDiGraph) – Graph in which to find nearest edges.

• X (float | Iterable[float]) – The points’ x (longitude) coordinates, in same CRS/units as graph
and containing no nulls.

• Y (float | Iterable[float]) – The points’ y (latitude) coordinates, in same CRS/units as graph
and containing no nulls.

• return_dist (bool) – If True, optionally also return the distance(s) between point(s) and
nearest edge(s).

Returns
ne or (ne, dist) – Nearest edge ID(s) as (u, v, k) tuples, or optionally a tuple of ID(s) and distance(s)
between each point and its nearest edge.

Return type
tuple[int, int, int] | npt.NDArray[np.object_] | tuple[tuple[int, int, int], float] | tu-
ple[npt.NDArray[np.object_], npt.NDArray[np.float64]]

osmnx.distance.nearest_nodes(G, X, Y , *, return_dist=False)
Find the nearest node to a point or to each of several points.

If X and Y are single coordinate values, this will return the nearest node to that point. If X and Y are iterables of
coordinate values, this will return the nearest node to each point.

If the graph is projected, this uses a k-d tree for Euclidean nearest neighbor search, which requires that scipy
is installed as an optional dependency. If it is unprojected, this uses a ball tree for haversine nearest neighbor
search, which requires that scikit-learn is installed as an optional dependency.

Parameters

• G (nx.MultiDiGraph) – Graph in which to find nearest nodes.

• X (float | Iterable[float]) – The points’ x (longitude) coordinates, in same CRS/units as graph
and containing no nulls.

6.3. User Reference 21

OSMnx, Release 2.0.0-dev

• Y (float | Iterable[float]) – The points’ y (latitude) coordinates, in same CRS/units as graph
and containing no nulls.

• return_dist (bool) – If True, optionally also return the distance(s) between point(s) and
nearest node(s).

Returns
nn or (nn, dist) – Nearest node ID(s) or optionally a tuple of ID(s) and distance(s) between each
point and its nearest node.

Return type
int | npt.NDArray[np.int64] | tuple[int, float] | tuple[npt.NDArray[np.int64],
npt.NDArray[np.float64]]

6.3.4 osmnx.elevation module

Add node elevations from raster files or web APIs, and calculate edge grades.

osmnx.elevation.add_edge_grades(G, *, add_absolute=True)
Calculate and add grade attributes to all graph edges.

Vectorized function to calculate the directed grade (i.e., rise over run) for each edge in the graph and add it to
the edge as an attribute. Nodes must already have elevation and length attributes before using this function.

See also the add_node_elevations_raster and add_node_elevations_google functions.

Parameters

• G (MultiDiGraph) – Graph with elevation node attributes.

• add_absolute (bool) – If True, also add absolute value of grade as grade_abs attribute.

Returns
G – Graph with grade (and optionally grade_abs) attributes on the edges.

Return type
networkx.MultiDiGraph

osmnx.elevation.add_node_elevations_google(G, *, api_key=None, batch_size=512, pause=0)
Add elevation (meters) attributes to all nodes using a web service.

By default, this uses the Google Maps Elevation API but you can optionally use an equivalent API with the same
interface and response format, such as Open Topo Data, via the settings module’s elevation_url_template. The
Google Maps Elevation API requires an API key but other providers may not. You can find more information
about the Google Maps Elevation API at: https://developers.google.com/maps/documentation/elevation

For a free local alternative see the add_node_elevations_raster function. See also the add_edge_grades function.

Parameters

• G (MultiDiGraph) – Graph to add elevation data to.

• api_key (str | None) – A valid API key. Can be None if the API does not require a key.

• batch_size (int) – Max number of coordinate pairs to submit in each request (depends on
provider’s limits). Google’s limit is 512.

• pause (float) – How long to pause in seconds between API calls, which can be increased
if you get rate limited.

Returns
G – Graph with elevation attributes on the nodes.

22 Chapter 6. Documentation

https://developers.google.com/maps/documentation/elevation

OSMnx, Release 2.0.0-dev

Return type
networkx.MultiDiGraph

osmnx.elevation.add_node_elevations_raster(G, filepath, *, band=1, cpus=None)
Add elevation attributes to all nodes from local raster file(s).

If filepath is an iterable of paths, this will generate a virtual raster composed of the files at those paths as an
intermediate step.

See also the add_edge_grades function.

Parameters

• G (MultiDiGraph) – Graph in same CRS as raster.

• filepath (str | Path | Iterable[str | Path]) – The path(s) to the raster file(s) to query.

• band (int) – Which raster band to query.

• cpus (int | None) – How many CPU cores to use. If None, use all available.

Returns
G – Graph with elevation attributes on the nodes.

Return type
networkx.MultiDiGraph

6.3.5 osmnx.features module

Download and create GeoDataFrames from OpenStreetMap geospatial features.

Retrieve points of interest, building footprints, transit lines/stops, or any other map features from OSM, including their
geometries and attribute data, then construct a GeoDataFrame of them. You can use this module to query for nodes,
ways, and relations (the latter of type “multipolygon” or “boundary” only) by passing a dictionary of desired OSM tags.

For more details, see https://wiki.openstreetmap.org/wiki/Map_features and https://wiki.openstreetmap.org/wiki/
Elements

Refer to the Getting Started guide for usage limitations.

osmnx.features.features_from_address(address, tags, dist)
Download OSM features within some distance of an address.

You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure
the Overpass server timeout, memory allocation, and other custom settings. This function searches for features
using tags. For more details, see: https://wiki.openstreetmap.org/wiki/Map_features

Parameters

• address (str) – The address to geocode and use as the center point around which to retrieve
the features.

• tags (dict[str, bool | str | list[str]]) – Tags for finding elements in the selected area.
Results are the union, not intersection of the tags and each result matches at least one tag.
The keys are OSM tags (e.g., building, landuse, highway, etc) and the values can be ei-
ther True to retrieve all elements matching the tag, or a string to retrieve a single tag:value
combination, or a list of strings to retrieve multiple values for the tag. For example, tags
= {‘building’: True} would return all buildings in the area. Or, tags = {‘amenity’:True,
‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, any lan-
duse=retail, any landuse=commercial, and any highway=bus_stop.

• dist (float) – Distance in meters from address to create a bounding box to query.

6.3. User Reference 23

https://wiki.openstreetmap.org/wiki/Map_features
https://wiki.openstreetmap.org/wiki/Elements
https://wiki.openstreetmap.org/wiki/Elements
https://wiki.openstreetmap.org/wiki/Map_features
tag:value

OSMnx, Release 2.0.0-dev

Returns
GeoDataFrame – gdf

Return type
geopandas.GeoDataFrame

osmnx.features.features_from_bbox(bbox, tags)
Download OSM features within a lat-lon bounding box.

You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure
the Overpass server timeout, memory allocation, and other custom settings. This function searches for features
using tags. For more details, see: https://wiki.openstreetmap.org/wiki/Map_features

Parameters

• bbox (tuple[float, float, float, float]) – Bounding box as (north, south, east, west).
Coordinates should be in unprojected latitude-longitude degrees (EPSG:4326).

• tags (dict[str, bool | str | list[str]]) – Tags for finding elements in the selected area.
Results are the union, not intersection of the tags and each result matches at least one tag.
The keys are OSM tags (e.g., building, landuse, highway, etc) and the values can be ei-
ther True to retrieve all elements matching the tag, or a string to retrieve a single tag:value
combination, or a list of strings to retrieve multiple values for the tag. For example, tags
= {‘building’: True} would return all buildings in the area. Or, tags = {‘amenity’:True,
‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, any lan-
duse=retail, any landuse=commercial, and any highway=bus_stop.

Returns
GeoDataFrame – gdf

Return type
geopandas.GeoDataFrame

osmnx.features.features_from_place(query, tags, *, which_result=None)
Download OSM features within the boundaries of some place(s).

The query must be geocodable and OSM must have polygon boundaries for the geocode result. If OSM does not
have a polygon for this place, you can instead get features within it using the features_from_address function,
which geocodes the place name to a point and gets the features within some distance of that point.

If OSM does have polygon boundaries for this place but you’re not finding it, try to vary the query string, pass
in a structured query dict, or vary the which_result argument to use a different geocode result. If you know the
OSM ID of the place, you can retrieve its boundary polygon using the geocode_to_gdf function, then pass it to
the features_from_polygon function.

You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure
the Overpass server timeout, memory allocation, and other custom settings. This function searches for features
using tags. For more details, see: https://wiki.openstreetmap.org/wiki/Map_features

Parameters

• query (str | dict[str, str] | list[str | dict[str, str]]) – The query or queries to
geocode to retrieve place boundary polygon(s).

• tags (dict[str, bool | str | list[str]]) – Tags for finding elements in the selected area.
Results are the union, not intersection of the tags and each result matches at least one tag.
The keys are OSM tags (e.g., building, landuse, highway, etc) and the values can be ei-
ther True to retrieve all elements matching the tag, or a string to retrieve a single tag:value
combination, or a list of strings to retrieve multiple values for the tag. For example, tags
= {‘building’: True} would return all buildings in the area. Or, tags = {‘amenity’:True,

24 Chapter 6. Documentation

https://wiki.openstreetmap.org/wiki/Map_features
tag:value
https://wiki.openstreetmap.org/wiki/Map_features
tag:value

OSMnx, Release 2.0.0-dev

‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, any lan-
duse=retail, any landuse=commercial, and any highway=bus_stop.

• which_result (int | None | list[int | None]) – Which search result to return. If None,
auto-select the first (Multi)Polygon or raise an error if OSM doesn’t return one.

Returns
GeoDataFrame – gdf

Return type
geopandas.GeoDataFrame

osmnx.features.features_from_point(center_point, tags, dist)
Download OSM features within some distance of a lat-lon point.

You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure
the Overpass server timeout, memory allocation, and other custom settings. This function searches for features
using tags. For more details, see: https://wiki.openstreetmap.org/wiki/Map_features

Parameters

• center_point (tuple[float, float]) – The (lat, lon) center point around which to
retrieve the features. Coordinates should be in unprojected latitude-longitude degrees
(EPSG:4326).

• tags (dict[str, bool | str | list[str]]) – Tags for finding elements in the selected area.
Results are the union, not intersection of the tags and each result matches at least one tag.
The keys are OSM tags (e.g., building, landuse, highway, etc) and the values can be ei-
ther True to retrieve all elements matching the tag, or a string to retrieve a single tag:value
combination, or a list of strings to retrieve multiple values for the tag. For example, tags
= {‘building’: True} would return all buildings in the area. Or, tags = {‘amenity’:True,
‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, any lan-
duse=retail, any landuse=commercial, and any highway=bus_stop.

• dist (float) – Distance in meters from center_point to create a bounding box to query.

Returns
GeoDataFrame – gdf

Return type
geopandas.GeoDataFrame

osmnx.features.features_from_polygon(polygon, tags)
Download OSM features within the boundaries of a (Multi)Polygon.

You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure
the Overpass server timeout, memory allocation, and other custom settings. This function searches for features
using tags. For more details, see: https://wiki.openstreetmap.org/wiki/Map_features

Parameters

• polygon (Polygon | MultiPolygon) – The geometry within which to retrieve features. Coor-
dinates should be in unprojected latitude-longitude degrees (EPSG:4326).

• tags (dict[str, bool | str | list[str]]) – Tags for finding elements in the selected area. Re-
sults are the union, not intersection of the tags and each result matches at least one tag.
The keys are OSM tags (e.g., building, landuse, highway, etc) and the values can be ei-
ther True to retrieve all elements matching the tag, or a string to retrieve a single tag:value
combination, or a list of strings to retrieve multiple values for the tag. For example, tags
= {‘building’: True} would return all buildings in the area. Or, tags = {‘amenity’:True,
‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, any lan-
duse=retail, any landuse=commercial, and any highway=bus_stop.

6.3. User Reference 25

https://wiki.openstreetmap.org/wiki/Map_features
tag:value
https://wiki.openstreetmap.org/wiki/Map_features
tag:value

OSMnx, Release 2.0.0-dev

Returns
gpd.GeoDataFrame – gdf

Return type
gpd.GeoDataFrame

osmnx.features.features_from_xml(filepath, *, polygon=None, tags=None, encoding='utf-8')
Create a GeoDataFrame of OSM features from data in an OSM XML file.

Because this function creates a GeoDataFrame of features from an OSM XML file that has already been down-
loaded (i.e., no query is made to the Overpass API), the polygon and tags arguments are optional. If they are
None, filtering will be skipped.

Parameters

• filepath (str | Path) – Path to file containing OSM XML data.

• tags (dict[str, bool | str | list[str]] | None) – Query tags to optionally filter the final Geo-
DataFrame.

• polygon (Polygon | MultiPolygon | None) – Spatial boundaries to optionally filter the final
GeoDataFrame.

• encoding (str) – The OSM XML file’s character encoding.

Returns
gpd.GeoDataFrame – gdf

Return type
gpd.GeoDataFrame

6.3.6 osmnx.geocoder module

Geocode place names or addresses or retrieve OSM elements by place name or ID.

This module uses the Nominatim API’s “search” and “lookup” endpoints. For more details see https://wiki.
openstreetmap.org/wiki/Elements and https://nominatim.org/.

osmnx.geocoder.geocode(query)
Geocode place names or addresses to (lat, lon) with the Nominatim API.

This geocodes the query via the Nominatim “search” endpoint.

Parameters
query (str) – The query string to geocode.

Returns
point – The (lat, lon) coordinates returned by the geocoder.

Return type
tuple[float, float]

osmnx.geocoder.geocode_to_gdf(query, *, which_result=None, by_osmid=False)
Retrieve OSM elements by place name or OSM ID with the Nominatim API.

If searching by place name, the query argument can be a string or structured dict, or a list of such strings/dicts to
send to the geocoder. This uses the Nominatim “search” endpoint to geocode the place name to the best-matching
OSM element, then returns that element and its attribute data.

You can instead query by OSM ID by passing by_osmid=True. This uses the Nominatim “lookup” endpoint to
retrieve the OSM element with that ID. In this case, the function treats the query argument as an OSM ID (or list

26 Chapter 6. Documentation

https://wiki.openstreetmap.org/wiki/Elements
https://wiki.openstreetmap.org/wiki/Elements
https://nominatim.org/

OSMnx, Release 2.0.0-dev

of OSM IDs), which must be prepended with their types: node (N), way (W), or relation (R) in accordance with
the Nominatim API format. For example, query=[“R2192363”, “N240109189”, “W427818536”].

If query is a list, then which_result must be either an int or a list with the same length as query. The queries you
provide must be resolvable to elements in the Nominatim database. The resulting GeoDataFrame’s geometry
column contains place boundaries if they exist.

Parameters

• query (str | dict[str, str] | list[str | dict[str, str]]) – The query string(s) or struc-
tured dict(s) to geocode.

• which_result (int | None | list[int | None]) – Which search result to return. If None,
auto-select the first (Multi)Polygon or raise an error if OSM doesn’t return one. To get the
top match regardless of geometry type, set which_result=1. Ignored if by_osmid=True.

• by_osmid (bool) – If True, treat query as an OSM ID lookup rather than text search.

Returns
gdf – GeoDataFrame with one row for each query result.

Return type
geopandas.GeoDataFrame

6.3.7 osmnx.graph module

Download and create graphs from OpenStreetMap data.

Refer to the Getting Started guide for usage limitations.

osmnx.graph.graph_from_address(address, dist, *, dist_type='bbox', network_type='all', simplify=True,
retain_all=False, truncate_by_edge=False, custom_filter=None)

Download and create a graph within some distance of an address.

This function uses filters to query the Overpass API: you can either specify a pre-defined network_type or provide
your own custom_filter with Overpass QL.

Use the settings module’s useful_tags_node and useful_tags_way settings to configure which OSM node/way
tags are added as graph node/edge attributes. You can also use the settings module to retrieve a snapshot of
historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and
other custom settings.

Parameters

• address (str) – The address to geocode and use as the central point around which to construct
the graph.

• dist (float) – Retain only those nodes within this many meters of center_point, measuring
distance according to dist_type.

• dist_type (str) – {“network”, “bbox”} If “bbox”, retain only those nodes within a bounding
box of dist. If “network”, retain only those nodes within dist network distance from the
centermost node.

• network_type (str) – {“all”, “all_public”, “bike”, “drive”, “drive_service”, “walk”} What
type of street network to retrieve if custom_filter is None.

• simplify (bool) – If True, simplify graph topology with the simplify_graph function.

• retain_all (bool) – If True, return the entire graph even if it is not connected. If False,
retain only the largest weakly connected component.

6.3. User Reference 27

OSMnx, Release 2.0.0-dev

• truncate_by_edge (bool) – If True, retain nodes outside bounding box if at least one of
node’s neighbors is within the bounding box.

• custom_filter (str | None) – A custom ways filter to be used instead of the network_type
presets, e.g. ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass in a net-
work_type that is in settings.bidirectional_network_types if you want the graph to be fully
bidirectional.

Returns
nx.MultiDiGraph | tuple[nx.MultiDiGraph, tuple[float, float]] – G or (G, (lat, lon))

Return type
nx.MultiDiGraph | tuple[nx.MultiDiGraph, tuple[float, float]]

Notes

Very large query areas use the utils_geo._consolidate_subdivide_geometry function to automatically make mul-
tiple requests: see that function’s documentation for caveats.

osmnx.graph.graph_from_bbox(bbox, *, network_type='all', simplify=True, retain_all=False,
truncate_by_edge=False, custom_filter=None)

Download and create a graph within a lat-lon bounding box.

This function uses filters to query the Overpass API: you can either specify a pre-defined network_type or provide
your own custom_filter with Overpass QL.

Use the settings module’s useful_tags_node and useful_tags_way settings to configure which OSM node/way
tags are added as graph node/edge attributes. You can also use the settings module to retrieve a snapshot of
historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and
other custom settings.

Parameters

• bbox (tuple[float, float, float, float]) – Bounding box as (north, south, east, west).
Coordinates should be in unprojected latitude-longitude degrees (EPSG:4326).

• network_type (str) – {“all”, “all_public”, “bike”, “drive”, “drive_service”, “walk”} What
type of street network to retrieve if custom_filter is None.

• simplify (bool) – If True, simplify graph topology via the simplify_graph function.

• retain_all (bool) – If True, return the entire graph even if it is not connected. If False,
retain only the largest weakly connected component.

• truncate_by_edge (bool) – If True, retain nodes outside bounding box if at least one of
node’s neighbors is within the bounding box.

• custom_filter (str | None) – A custom ways filter to be used instead of the network_type
presets, e.g. ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass in a net-
work_type that is in settings.bidirectional_network_types if you want the graph to be fully
bidirectional.

Returns
MultiDiGraph – G

Return type
networkx.MultiDiGraph

28 Chapter 6. Documentation

OSMnx, Release 2.0.0-dev

Notes

Very large query areas use the utils_geo._consolidate_subdivide_geometry function to automatically make mul-
tiple requests: see that function’s documentation for caveats.

osmnx.graph.graph_from_place(query, *, network_type='all', simplify=True, retain_all=False,
truncate_by_edge=False, which_result=None, custom_filter=None)

Download and create a graph within the boundaries of some place(s).

The query must be geocodable and OSM must have polygon boundaries for the geocode result. If OSM does
not have a polygon for this place, you can instead get its street network using the graph_from_address function,
which geocodes the place name to a point and gets the network within some distance of that point.

If OSM does have polygon boundaries for this place but you’re not finding it, try to vary the query string, pass
in a structured query dict, or vary the which_result argument to use a different geocode result. If you know the
OSM ID of the place, you can retrieve its boundary polygon using the geocode_to_gdf function, then pass it to
the features_from_polygon function.

This function uses filters to query the Overpass API: you can either specify a pre-defined network_type or provide
your own custom_filter with Overpass QL.

Use the settings module’s useful_tags_node and useful_tags_way settings to configure which OSM node/way
tags are added as graph node/edge attributes. You can also use the settings module to retrieve a snapshot of
historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and
other custom settings.

Parameters

• query (str | dict[str, str] | list[str | dict[str, str]]) – The query or queries to
geocode to retrieve place boundary polygon(s).

• network_type (str) – {“all”, “all_public”, “bike”, “drive”, “drive_service”, “walk”} What
type of street network to retrieve if custom_filter is None.

• simplify (bool) – If True, simplify graph topology with the simplify_graph function.

• retain_all (bool) – If True, return the entire graph even if it is not connected. If False,
retain only the largest weakly connected component.

• truncate_by_edge (bool) – If True, retain nodes outside bounding box if at least one of
node’s neighbors is within the bounding box.

• which_result (int | None | list[int | None]) – which geocoding result to use. if None,
auto-select the first (Multi)Polygon or raise an error if OSM doesn’t return one.

• custom_filter (str | None) – A custom ways filter to be used instead of the network_type
presets, e.g. ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass in a net-
work_type that is in settings.bidirectional_network_types if you want the graph to be fully
bidirectional.

Returns
MultiDiGraph – G

Return type
networkx.MultiDiGraph

6.3. User Reference 29

OSMnx, Release 2.0.0-dev

Notes

Very large query areas use the utils_geo._consolidate_subdivide_geometry function to automatically make mul-
tiple requests: see that function’s documentation for caveats.

osmnx.graph.graph_from_point(center_point, dist, *, dist_type='bbox', network_type='all', simplify=True,
retain_all=False, truncate_by_edge=False, custom_filter=None)

Download and create a graph within some distance of a lat-lon point.

This function uses filters to query the Overpass API: you can either specify a pre-defined network_type or provide
your own custom_filter with Overpass QL.

Use the settings module’s useful_tags_node and useful_tags_way settings to configure which OSM node/way
tags are added as graph node/edge attributes. You can also use the settings module to retrieve a snapshot of
historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and
other custom settings.

Parameters

• center_point (tuple[float, float]) – The (lat, lon) center point around which to
construct the graph. Coordinates should be in unprojected latitude-longitude degrees
(EPSG:4326).

• dist (float) – Retain only those nodes within this many meters of center_point, measuring
distance according to dist_type.

• dist_type (str) – {“bbox”, “network”} If “bbox”, retain only those nodes within a bound-
ing box of dist length/width. If “network”, retain only those nodes within dist network dis-
tance of the nearest node to center_point.

• network_type (str) – {“all”, “all_public”, “bike”, “drive”, “drive_service”, “walk”} What
type of street network to retrieve if custom_filter is None.

• simplify (bool) – If True, simplify graph topology with the simplify_graph function.

• retain_all (bool) – If True, return the entire graph even if it is not connected. If False,
retain only the largest weakly connected component.

• truncate_by_edge (bool) – If True, retain nodes outside bounding box if at least one of
node’s neighbors is within the bounding box.

• custom_filter (str | None) – A custom ways filter to be used instead of the network_type
presets, e.g. ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass in a net-
work_type that is in settings.bidirectional_network_types if you want the graph to be fully
bidirectional.

Returns
MultiDiGraph – G

Return type
networkx.MultiDiGraph

30 Chapter 6. Documentation

OSMnx, Release 2.0.0-dev

Notes

Very large query areas use the utils_geo._consolidate_subdivide_geometry function to automatically make mul-
tiple requests: see that function’s documentation for caveats.

osmnx.graph.graph_from_polygon(polygon, *, network_type='all', simplify=True, retain_all=False,
truncate_by_edge=False, custom_filter=None)

Download and create a graph within the boundaries of a (Multi)Polygon.

This function uses filters to query the Overpass API: you can either specify a pre-defined network_type or provide
your own custom_filter with Overpass QL.

Use the settings module’s useful_tags_node and useful_tags_way settings to configure which OSM node/way
tags are added as graph node/edge attributes. You can also use the settings module to retrieve a snapshot of
historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and
other custom settings.

Parameters

• polygon (Polygon | MultiPolygon) – The geometry within which to construct the graph.
Coordinates should be in unprojected latitude-longitude degrees (EPSG:4326).

• network_type (str) – {“all”, “all_public”, “bike”, “drive”, “drive_service”, “walk”} What
type of street network to retrieve if custom_filter is None.

• simplify (bool) – If True, simplify graph topology with the simplify_graph function.

• retain_all (bool) – If True, return the entire graph even if it is not connected. If False,
retain only the largest weakly connected component.

• truncate_by_edge (bool) – If True, retain nodes outside bounding box if at least one of
node’s neighbors is within the bounding box.

• custom_filter (str | None) – A custom ways filter to be used instead of the network_type
presets, e.g. ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass in a net-
work_type that is in settings.bidirectional_network_types if you want the graph to be fully
bidirectional.

Returns
nx.MultiDiGraph – G

Return type
nx.MultiDiGraph

Notes

Very large query areas use the utils_geo._consolidate_subdivide_geometry function to automatically make mul-
tiple requests: see that function’s documentation for caveats.

osmnx.graph.graph_from_xml(filepath, *, bidirectional=False, simplify=True, retain_all=False,
encoding='utf-8')

Create a graph from data in an OSM XML file.

Do not load an XML file previously generated by OSMnx: this use case is not supported and may not behave as
expected. To save/load graphs to/from disk for later use in OSMnx, use the io.save_graphml and io.load_graphml
functions instead.

Use the settings module’s useful_tags_node and useful_tags_way settings to configure which OSM node/way
tags are added as graph node/edge attributes.

Parameters

6.3. User Reference 31

OSMnx, Release 2.0.0-dev

• filepath (str | Path) – Path to file containing OSM XML data.

• bidirectional (bool) – If True, create bidirectional edges for one-way streets.

• simplify (bool) – If True, simplify graph topology with the simplify_graph function.

• retain_all (bool) – If True, return the entire graph even if it is not connected. If False,
retain only the largest weakly connected component.

• encoding (str) – The OSM XML file’s character encoding.

Returns
MultiDiGraph – G

Return type
networkx.MultiDiGraph

6.3.8 osmnx.io module

File I/O functions to save/load graphs to/from files on disk.

osmnx.io.load_graphml(filepath=None, *, graphml_str=None, node_dtypes=None, edge_dtypes=None,
graph_dtypes=None)

Load an OSMnx-saved GraphML file from disk or GraphML string.

This function converts node, edge, and graph-level attributes (serialized as strings) to their appropriate data
types. These can be customized as needed by passing in dtypes arguments providing types or custom con-
verter functions. For example, if you want to convert some attribute’s values to bool, consider using the built-in
ox.io._convert_bool_string function to properly handle “True”/”False” string literals as True/False booleans:
ox.load_graphml(fp, node_dtypes={my_attr: ox.io._convert_bool_string}).

If you manually configured the all_oneway=True setting, you may need to manually specify here that edge
oneway attributes should be type str.

Note that you must pass one and only one of filepath or graphml_str. If passing graphml_str, you may need to
decode the bytes read from your file before converting to string to pass to this function.

Parameters

• filepath (str | Path | None) – Path to the GraphML file.

• graphml_str (str | None) – Valid and decoded string representation of a GraphML file’s
contents.

• node_dtypes (dict[str, Any] | None) – Dict of node attribute names:types to convert val-
ues’ data types. The type can be a type or a custom string converter function.

• edge_dtypes (dict[str, Any] | None) – Dict of edge attribute names:types to convert val-
ues’ data types. The type can be a type or a custom string converter function.

• graph_dtypes (dict[str, Any] | None) – Dict of graph-level attribute names:types to con-
vert values’ data types. The type can be a type or a custom string converter function.

Returns
MultiDiGraph – G

Return type
networkx.MultiDiGraph

osmnx.io.save_graph_geopackage(G, filepath=None, *, directed=False, encoding='utf-8')
Save graph nodes and edges to disk as layers in a GeoPackage file.

Parameters

32 Chapter 6. Documentation

OSMnx, Release 2.0.0-dev

• G (MultiDiGraph) – The graph to save.

• filepath (str | Path | None) – Path to the GeoPackage file including extension. If None,
use default settings.data_folder/graph.gpkg.

• directed (bool) – If False, save one edge for each undirected edge in the graph but retain
original oneway and to/from information as edge attributes. If True, save one edge for each
directed edge in the graph.

• encoding (str) – The character encoding of the saved GeoPackage file.

Returns
None – None

Return type
None

osmnx.io.save_graph_xml(G, filepath=None, *, way_tag_aggs=None, encoding='utf-8')
Save graph to disk as an OSM XML file.

This function exists only to allow serialization to the OSM XML format for applications that require it, and has
constraints to conform to that. As such, it has a limited use case which does not include saving/loading graphs for
subsequent OSMnx analysis. To save/load graphs to/from disk for later use in OSMnx, use the io.save_graphml
and io.load_graphml functions instead. To load a graph from an OSM XML file that you have downloaded or
generated elsewhere, use the graph.graph_from_xml function.

Use the settings module’s useful_tags_node and useful_tags_way settings to configure which tags your graph is
created and saved with. This function merges graph edges such that each OSM way has one entry in the XML
output, with the way’s nodes topologically sorted. G must be unsimplified to save as OSM XML: otherwise, one
edge could comprise multiple OSM ways, making it impossible to group and sort edges in way. G should also
have been created with ox.settings.all_oneway=True for this function to behave properly.

Parameters

• G (MultiDiGraph) – Unsimplified, unprojected graph to save as an OSM XML file.

• filepath (str | Path | None) – Path to the saved file including extension. If None, use
default settings.data_folder/graph.osm.

• way_tag_aggs (dict[str, Any] | None) – Keys are OSM way tag keys and values are aggre-
gation functions (anything accepted as an argument by pandas.agg). Allows user to aggregate
graph edge attribute values into single OSM way values. If None, or if some tag’s key does
not exist in the dict, the way attribute will be assigned the value of the first edge of the way.

• encoding (str) – The character encoding of the saved OSM XML file.

Returns
None – None

Return type
None

osmnx.io.save_graphml(G, filepath=None, *, gephi=False, encoding='utf-8')
Save graph to disk as GraphML file.

Parameters

• G (MultiDiGraph) – The graph to save as.

• filepath (str | Path | None) – Path to the GraphML file including extension. If None, use
default settings.data_folder/graph.graphml.

6.3. User Reference 33

OSMnx, Release 2.0.0-dev

• gephi (bool) – If True, give each edge a unique key/id for compatibility with Gephi’s inter-
pretation of the GraphML specification.

• encoding (str) – The character encoding of the saved GraphML file.

Returns
None – None

Return type
None

6.3.9 osmnx.plot module

Visualize street networks, routes, orientations, and geospatial features.

osmnx.plot.get_colors(n, *, cmap='viridis', start=0, stop=1, alpha=None)
Return n evenly-spaced colors from a matplotlib colormap.

Parameters

• n (int) – How many colors to generate.

• cmap (str) – Name of the matplotlib colormap from which to choose the colors.

• start (float) – Where to start in the colorspace (from 0 to 1).

• stop (float) – Where to end in the colorspace (from 0 to 1).

• alpha (float | None) – If None, return colors as HTML-like hex triplet “#rrggbb” RGB
strings. If float, return as “#rrggbbaa” RGBa strings.

Returns
list[str] – color_list

Return type
list[str]

osmnx.plot.get_edge_colors_by_attr(G, attr, *, num_bins=None, cmap='viridis', start=0, stop=1,
na_color='none', equal_size=False)

Return colors based on edges’ numerical attribute values.

Parameters

• G (MultiDiGraph) – Input graph.

• attr (str) – Name of a node attribute with numerical values.

• num_bins (int | None) – If None, linearly map a color to each value. Otherwise, assign
values to this many bins then assign a color to each bin.

• cmap (str) – Name of the matplotlib colormap from which to choose the colors.

• start (float) – Where to start in the colorspace (from 0 to 1).

• stop (float) – Where to end in the colorspace (from 0 to 1).

• na_color (str) – The color to assign to nodes with missing attr values.

• equal_size (bool) – Ignored if num_bins is None. If True, bin into equal-sized quantiles
(requires unique bin edges). If False, bin into equal-spaced bins.

Returns
edge_colors – Labels are (u, v, k) edge IDs, values are colors as hex strings.

34 Chapter 6. Documentation

OSMnx, Release 2.0.0-dev

Return type
pandas.Series

osmnx.plot.get_node_colors_by_attr(G, attr, *, num_bins=None, cmap='viridis', start=0, stop=1,
na_color='none', equal_size=False)

Return colors based on nodes’ numerical attribute values.

Parameters

• G (MultiDiGraph) – Input graph.

• attr (str) – Name of a node attribute with numerical values.

• num_bins (int | None) – If None, linearly map a color to each value. Otherwise, assign
values to this many bins then assign a color to each bin.

• cmap (str) – Name of the matplotlib colormap from which to choose the colors.

• start (float) – Where to start in the colorspace (from 0 to 1).

• stop (float) – Where to end in the colorspace (from 0 to 1).

• na_color (str) – The color to assign to nodes with missing attr values.

• equal_size (bool) – Ignored if num_bins is None. If True, bin into equal-sized quantiles
(requires unique bin edges). If False, bin into equal-spaced bins.

Returns
node_colors – Labels are node IDs, values are colors as hex strings.

Return type
pandas.Series

osmnx.plot.plot_figure_ground(G, *, dist=805, street_widths=None, default_width=4, color='w',
**pg_kwargs)

Plot a figure-ground diagram of a street network.

Parameters

• G (MultiDiGraph) – An unprojected graph.

• dist (float) – How many meters to extend plot’s bounding box north, south, east, and west
from the graph’s center point. Default corresponds to a square mile bounding box.

• street_widths (dict[str, float] | None) – Dict keys are street types (ie, OSM “highway”
tags) and values are the widths to plot them, in pixels.

• default_width (float) – Fallback width, in pixels, for any street type not in street_widths.

• color (str) – The color of the streets.

• pg_kwargs (Any) – Keyword arguments to pass to plot_graph.

Returns
tuple[Figure, Axes] – fig, ax

Return type
tuple[matplotlib.figure.Figure, matplotlib.axes._axes.Axes]

osmnx.plot.plot_footprints(gdf , *, ax=None, figsize=(8, 8), color='orange', edge_color='none',
edge_linewidth=0, alpha=None, bgcolor='#111111', bbox=None, show=True,
close=False, save=False, filepath=None, dpi=600)

Visualize a GeoDataFrame of geospatial features’ footprints.

Parameters

6.3. User Reference 35

OSMnx, Release 2.0.0-dev

• gdf (gpd.GeoDataFrame) – GeoDataFrame of footprints (i.e., Polygons and/or MultiPoly-
gons).

• ax (Axes | None) – If not None, plot on this pre-existing axes instance.

• figsize (tuple[float, float]) – If ax is None, create new figure with size (width, height).

• color (str) – Color of the footprints.

• edge_color (str) – Color of the footprints’ edges.

• edge_linewidth (float) – Width of the footprints’ edges.

• alpha (float | None) – Opacity of the footprints’ edges.

• bgcolor (str) – Background color of the figure.

• bbox (tuple[float, float, float, float] | None) – Bounding box as (north, south, east, west). If
None, calculate it from the spatial extents of the geometries in gdf.

• show (bool) – If True, call pyplot.show() to show the figure.

• close (bool) – If True, call pyplot.close() to close the figure.

• save (bool) – If True, save the figure to disk at filepath.

• filepath (str | Path | None) – The path to the file if save is True. File format is determined
from the extension. If None, save at settings.imgs_folder/image.png.

• dpi (int) – The resolution of saved file if save is True.

Returns
tuple[Figure, Axes] – fig, ax

Return type
tuple[Figure, Axes]

osmnx.plot.plot_graph(G, *, ax=None, figsize=(8, 8), bgcolor='#111111', node_color='w', node_size=15,
node_alpha=None, node_edgecolor='none', node_zorder=1, edge_color='#999999',
edge_linewidth=1, edge_alpha=None, bbox=None, show=True, close=False,
save=False, filepath=None, dpi=300)

Visualize a graph.

Parameters

• G (nx.MultiGraph | nx.MultiDiGraph) – Input graph.

• ax (Axes | None) – If not None, plot on this pre-existing axes instance.

• figsize (tuple[float, float]) – If ax is None, create new figure with size (width, height).

• bgcolor (str) – Background color of the figure.

• node_color (str | Sequence[str]) – Color(s) of the nodes.

• node_size (float | Sequence[float]) – Size(s) of the nodes. If 0, then skip plotting the nodes.

• node_alpha (float | None) – Opacity of the nodes. If you passed RGBa values to node_color,
set node_alpha=None to use the alpha channel in node_color.

• node_edgecolor (str | Iterable[str]) – Color(s) of the nodes’ markers’ borders.

• node_zorder (int) – The zorder to plot nodes. Edges are always 1, so set node_zorder=0
to plot nodes beneath edges.

• edge_color (str | Iterable[str]) – Color(s) of the edges’ lines.

36 Chapter 6. Documentation

OSMnx, Release 2.0.0-dev

• edge_linewidth (float | Sequence[float]) – Width(s) of the edges’ lines. If 0, then skip
plotting the edges.

• edge_alpha (float | None) – Opacity of the edges. If you passed RGBa values to edge_color,
set edge_alpha=None to use the alpha channel in edge_color.

• bbox (tuple[float, float, float, float] | None) – Bounding box as (north, south, east, west). If
None, calculate it from spatial extents of plotted geometries.

• show (bool) – If True, call pyplot.show() to show the figure.

• close (bool) – If True, call pyplot.close() to close the figure.

• save (bool) – If True, save the figure to disk at filepath.

• filepath (str | Path | None) – The path to the file if save is True. File format is determined
from the extension. If None, save at settings.imgs_folder/image.png.

• dpi (int) – The resolution of saved file if save is True.

Returns
tuple[Figure, Axes] – fig, ax

Return type
tuple[Figure, Axes]

osmnx.plot.plot_graph_route(G, route, *, route_color='r', route_linewidth=4, route_alpha=0.5,
orig_dest_size=100, ax=None, **pg_kwargs)

Visualize a path along a graph.

Parameters

• G (nx.MultiDiGraph) – Input graph.

• route (list[int]) – A path of node IDs.

• route_color (str) – The color of the route.

• route_linewidth (float) – Width of the route’s line.

• route_alpha (float) – Opacity of the route’s line.

• orig_dest_size (float) – Size of the origin and destination nodes.

• ax (Axes | None) – If not None, plot on this pre-existing axes instance.

• pg_kwargs (Any) – Keyword arguments to pass to plot_graph.

Returns
tuple[Figure, Axes] – fig, ax

Return type
tuple[Figure, Axes]

osmnx.plot.plot_graph_routes(G, routes, *, route_colors='r', route_linewidths=4, **pgr_kwargs)
Visualize multiple paths along a graph.

Parameters

• G (MultiDiGraph) – Input graph.

• routes (Iterable[list[int]]) – Paths of node IDs.

• route_colors (str | Iterable[str]) – If string, the one color for all routes. Otherwise,
the color for each route.

6.3. User Reference 37

OSMnx, Release 2.0.0-dev

• route_linewidths (float | Iterable[float]) – If float, the one linewidth for all routes.
Otherwise, the linewidth for each route.

• pgr_kwargs (Any) – Keyword arguments to pass to plot_graph_route.

Returns
tuple[Figure, Axes] – fig, ax

Return type
tuple[matplotlib.figure.Figure, matplotlib.axes._axes.Axes]

osmnx.plot.plot_orientation(G, *, num_bins=36, min_length=0, weight=None, ax=None, figsize=(5, 5),
area=True, color='#003366', edgecolor='k', linewidth=0.5, alpha=0.7,
title=None, title_y=1.05, title_font=None, xtick_font=None)

Plot a polar histogram of a spatial network’s edge bearings.

Ignores self-loop edges as their bearings are undefined. If G is a MultiGraph, all edge bearings will be bidi-
rectional (ie, two reciprocal bearings per undirected edge). If G is a MultiDiGraph, all edge bearings will be
directional (ie, one bearing per directed edge). See also the bearings module.

For more info see: Boeing, G. 2019. “Urban Spatial Order: Street Network Orientation, Configuration, and
Entropy.” Applied Network Science, 4 (1), 67. https://doi.org/10.1007/s41109-019-0189-1

Parameters

• G (nx.MultiGraph | nx.MultiDiGraph) – Unprojected graph with bearing attributes on each
edge.

• num_bins (int) – Number of bins. For example, if num_bins=36 is provided, then each bin
will represent 10 degrees around the compass.

• min_length (float) – Ignore edges with “length” attribute values less than min_length.

• weight (str | None) – If not None, weight the edges’ bearings by this (non-null) edge attribute.

• ax (PolarAxes | None) – If not None, plot on this pre-existing axes instance (must have pro-
jection=polar).

• figsize (tuple[float, float]) – If ax is None, create new figure with size (width, height).

• area (bool) – If True, set bar length so area is proportional to frequency. Otherwise, set bar
length so height is proportional to frequency.

• color (str) – Color of the histogram bars.

• edgecolor (str) – Color of the histogram bar edges.

• linewidth (float) – Width of the histogram bar edges.

• alpha (float) – Opacity of the histogram bars.

• title (str | None) – The figure’s title.

• title_y (float) – The y position to place title.

• title_font (dict[str, Any] | None) – The title’s fontdict to pass to matplotlib.

• xtick_font (dict[str, Any] | None) – The xtick labels’ fontdict to pass to matplotlib.

Returns
tuple[Figure, PolarAxes] – fig, ax

Return type
tuple[Figure, PolarAxes]

38 Chapter 6. Documentation

https://doi.org/10.1007/s41109-019-0189-1

OSMnx, Release 2.0.0-dev

6.3.10 osmnx.projection module

Project a graph, GeoDataFrame, or geometry to a different CRS.

osmnx.projection.is_projected(crs)
Determine if a coordinate reference system is projected or not.

Parameters
crs (Any) – The identifier of the coordinate reference system. This can be anything accepted by
pyproj.CRS.from_user_input(), such as an authority string or a WKT string.

Returns
projected – True if crs is projected, otherwise False

Return type
bool

osmnx.projection.project_gdf(gdf , *, to_crs=None, to_latlong=False)
Project a GeoDataFrame from its current CRS to another.

If to_latlong is True, this projects the GeoDataFrame to the coordinate reference system defined by set-
tings.default_crs. Otherwise it projects it to the CRS defined by to_crs. If to_crs is None, it projects it to the
CRS of an appropriate UTM zone given geometry’s bounds.

Parameters

• gdf (GeoDataFrame) – The GeoDataFrame to be projected.

• to_crs (Any | None) – If None, project to an appropriate UTM zone. Otherwise project to
this CRS.

• to_latlong (bool) – If True, project to settings.default_crs and ignore to_crs.

Returns
gdf_proj – The projected GeoDataFrame.

Return type
geopandas.GeoDataFrame

osmnx.projection.project_geometry(geometry, *, crs=None, to_crs=None, to_latlong=False)
Project a Shapely geometry from its current CRS to another.

If to_latlong is True, this projects the geometry to the coordinate reference system defined by settings.default_crs.
Otherwise it projects it to the CRS defined by to_crs. If to_crs is None, it projects it to the CRS of an appropriate
UTM zone given geometry’s bounds.

Parameters

• geometry (Geometry) – The geometry to be projected.

• crs (Any | None) – The initial CRS of geometry. If None, it will be set to settings.default_crs.

• to_crs (Any | None) – If None, project to an appropriate UTM zone. Otherwise project to
this CRS.

• to_latlong (bool) – If True, project to settings.default_crs and ignore to_crs.

Returns
geometry_proj, crs – The projected geometry and its new CRS.

Return type
tuple[shapely.Geometry, Any]

6.3. User Reference 39

OSMnx, Release 2.0.0-dev

osmnx.projection.project_graph(G, *, to_crs=None, to_latlong=False)
Project a graph from its current CRS to another.

If to_latlong is True, this projects the graph to the coordinate reference system defined by settings.default_crs.
Otherwise it projects it to the CRS defined by to_crs. If to_crs is None, it projects it to the CRS of an appropriate
UTM zone given geometry’s bounds.

Parameters

• G (MultiDiGraph) – The graph to be projected.

• to_crs (Any | None) – If None, project to an appropriate UTM zone. Otherwise project to
this CRS.

• to_latlong (bool) – If True, project to settings.default_crs and ignore to_crs.

Returns
G_proj – The projected graph.

Return type
networkx.MultiDiGraph

6.3.11 osmnx.routing module

Calculate edge speeds, travel times, and weighted shortest paths.

osmnx.routing.add_edge_speeds(G, *, hwy_speeds=None, fallback=None, agg=numpy.mean)
Add edge speeds (km per hour) to graph as new speed_kph edge attributes.

By default, this imputes free-flow travel speeds for all edges via the mean maxspeed value of the edges of each
highway type. For highway types in the graph that have no maxspeed value on any edge, it assigns the mean of
all maxspeed values in graph.

This default mean-imputation can obviously be imprecise, and the user can override it by passing in hwy_speeds
and/or fallback arguments that correspond to local speed limit standards. The user can also specify a different
aggregation function (such as the median) to impute missing values from the observed values.

If edge maxspeed attribute has “mph” in it, value will automatically be converted from miles per hour to km
per hour. Any other speed units should be manually converted to km per hour prior to running this function,
otherwise there could be unexpected results. If “mph” does not appear in the edge’s maxspeed attribute string,
then function assumes kph, per OSM guidelines: https://wiki.openstreetmap.org/wiki/Map_Features/Units

Parameters

• G (MultiDiGraph) – Input graph.

• hwy_speeds (dict[str, float] | None) – Dict keys are OSM highway types and values are
typical speeds (km per hour) to assign to edges of that highway type for any edges missing
speed data. Any edges with highway type not in hwy_speeds will be assigned the mean
pre-existing speed value of all edges of that highway type.

• fallback (float | None) – Default speed value (km per hour) to assign to edges whose
highway type did not appear in hwy_speeds and had no pre-existing speed attribute values
on any edge.

• agg (Callable[[Any], Any]) – Aggregation function to impute missing values from ob-
served values. The default is numpy.mean, but you might also consider for example
numpy.median, numpy.nanmedian, or your own custom function.

Returns
G – Graph with speed_kph attributes on all edges.

40 Chapter 6. Documentation

https://wiki.openstreetmap.org/wiki/Map_Features/Units

OSMnx, Release 2.0.0-dev

Return type
networkx.MultiDiGraph

osmnx.routing.add_edge_travel_times(G)
Add edge travel time (seconds) to graph as new travel_time edge attributes.

Calculates free-flow travel time along each edge, based on length and speed_kph attributes. Note: run
add_edge_speeds first to generate the speed_kph attribute. All edges must have length and speed_kph attributes
and all their values must be non-null.

Parameters
G (MultiDiGraph) – Input graph.

Returns
G – Graph with travel_time attributes on all edges.

Return type
networkx.MultiDiGraph

osmnx.routing.k_shortest_paths(G, orig, dest, k, *, weight='length')
Solve k shortest paths from an origin node to a destination node.

Uses Yen’s algorithm. See also shortest_path to solve just the one shortest path.

Parameters

• G (MultiDiGraph) – Input graph.

• orig (int) – Origin node ID.

• dest (int) – Destination node ID.

• k (int) – Number of shortest paths to solve.

• weight (str) – Edge attribute to minimize when solving shortest paths.

Yields
path – The node IDs constituting the next-shortest path.

Return type
Iterator[list[int]]

osmnx.routing.route_to_gdf(G, route, *, weight='length')
Return a GeoDataFrame of the edges in a path, in order.

Parameters

• G (MultiDiGraph) – Input graph.

• route (list[int]) – Node IDs constituting the path.

• weight (str) – Attribute value to minimize when choosing between parallel edges.

Returns
GeoDataFrame – gdf_edges

Return type
geopandas.GeoDataFrame

osmnx.routing.shortest_path(G, orig, dest, *, weight='length', cpus=1)
Solve shortest path from origin node(s) to destination node(s).

Uses Dijkstra’s algorithm. If orig and dest are single node IDs, this will return a list of the nodes constituting
the shortest path between them. If orig and dest are lists of node IDs, this will return a list of lists of the nodes
constituting the shortest path between each origin-destination pair. If a path cannot be solved, this will return

6.3. User Reference 41

OSMnx, Release 2.0.0-dev

None for that path. You can parallelize solving multiple paths with the cpus parameter, but be careful to not
exceed your available RAM.

See also k_shortest_paths to solve multiple shortest paths between a single origin and destination. For additional
functionality or different solver algorithms, use NetworkX directly.

Parameters

• G (MultiDiGraph) – Input graph,

• orig (int | Iterable[int]) – Origin node ID(s).

• dest (int | Iterable[int]) – Destination node ID(s).

• weight (str) – Edge attribute to minimize when solving shortest path.

• cpus (int | None) – How many CPU cores to use. If None, use all available.

Returns
path – The node IDs constituting the shortest path, or, if orig and dest are both iterable, then a
list of such paths.

Return type
list[int] | None | list[list[int] | None]

6.3.12 osmnx.settings module

Global settings that can be configured by the user.

all_oneway
[bool] Only use if subsequently saving graph to an OSM XML file via the save_graph_xml function. If True,
forces all ways to be added as one-way ways, preserving the original order of the nodes in the OSM way. This
also retains the original OSM way’s oneway tag’s string value as edge attribute values, rather than converting
them to True/False bool values. Default is False.

bidirectional_network_types
[list[str]] Network types for which a fully bidirectional graph will be created. Default is [“walk”].

cache_folder
[str | Path] Path to folder to save/load HTTP response cache files, if the use_cache setting is True. Default is
“./cache”.

cache_only_mode
[bool] If True, download network data from Overpass then raise a CacheOnlyModeInterrupt error for user to
catch. This prevents graph building from taking place and instead just saves Overpass response to cache. Useful
for sequentially caching lots of raw data (as you can only query Overpass one request at a time) then using the
local cache to quickly build many graphs simultaneously with multiprocessing. Default is False.

data_folder
[str | Path] Path to folder to save/load graph files by default. Default is “./data”.

default_access
[str] Filter for the OSM “access” tag. Default is ‘[“access”!~”private”]’. Note that also filtering out “ac-
cess=no” ways prevents including transit-only bridges (e.g., Tilikum Crossing) from appearing in drivable road
network (e.g., ‘[“access”!~”private|no”]’). However, some drivable tollroads have “access=no” plus a “ac-
cess:conditional” tag to clarify when it is accessible, so we can’t filter out all “access=no” ways by default.
Best to be permissive here then remove complicated combinations of tags programatically after the full graph is
downloaded and constructed.

default_crs
[str] Default coordinate reference system to set when creating graphs. Default is “epsg:4326”.

42 Chapter 6. Documentation

OSMnx, Release 2.0.0-dev

doh_url_template
[str | None] Endpoint to resolve DNS-over-HTTPS if local DNS resolution fails. Set to None to disable DoH, but
see downloader._config_dns documentation for caveats. Default is: “https://8.8.8.8/resolve?name={hostname}”

elevation_url_template
[str] Endpoint of the Google Maps Elevation API (or equivalent), containing exactly two parameters: locations
and key. Default is: “https://maps.googleapis.com/maps/api/elevation/json?locations={locations}&key={key}”
One example of an alternative equivalent would be Open Topo Data:
“https://api.opentopodata.org/v1/aster30m?locations={locations}&key={key}”

http_accept_language
[str] HTTP header accept-language. Default is “en”. Note that Nominatim’s default language is “en” and it may
sort its results’ importance scores differently if a different language is specified.

http_referer
[str] HTTP header referer. Default is “OSMnx Python package (https://github.com/gboeing/osmnx)”.

http_user_agent
[str] HTTP header user-agent. Default is “OSMnx Python package (https://github.com/gboeing/osmnx)”.

imgs_folder
[str | Path] Path to folder in which to save plotted images by default. Default is “./images”.

log_file
[bool] If True, save log output to a file in logs_folder. Default is False.

log_filename
[str] Name of the log file, without file extension. Default is “osmnx”.

log_console
[bool] If True, print log output to the console (terminal window). Default is False.

log_level
[int] One of Python’s logger.level constants. Default is logging.INFO.

log_name
[str] Name of the logger. Default is “OSMnx”.

logs_folder
[str | Path] Path to folder in which to save log files. Default is “./logs”.

max_query_area_size
[float] Maximum area for any part of the geometry in meters: any polygon bigger than this will get divided up
for multiple queries to the API. Default is 2500000000.

nominatim_key
[str | None] Your Nominatim API key, if you are using an API instance that requires one. Default is None.

nominatim_url
[str] The base API url to use for Nominatim queries. Default is “https://nominatim.openstreetmap.org/”.

overpass_memory
[int | None] Overpass server memory allocation size for the query, in bytes. If None, server will choose its default
allocation size. Use with caution. Default is None.

overpass_rate_limit
[bool] If True, check the Overpass server status endpoint for how long to pause before making request. Necessary
if server uses slot management, but can be set to False if you are running your own Overpass instance without
rate limiting. Default is True.

overpass_settings
[str] Settings string for Overpass queries. Default is “[out:json][timeout:{timeout}]{maxsize}”. By default, the

6.3. User Reference 43

OSMnx, Release 2.0.0-dev

{timeout} and {maxsize} values are set dynamically by OSMnx when used. To query, for example, historical
OSM data as of a certain date: ‘[out:json][timeout:90][date:”2019-10-28T19:20:00Z”]’. Use with caution.

overpass_url
[str] The base API url to use for Overpass queries. Default is “https://overpass-api.de/api”.

requests_kwargs
[dict[str, Any]] Optional keyword args to pass to the requests package when connecting to APIs, for example
to configure authentication or provide a path to a local certificate file. More info on options such as auth, cert,
verify, and proxies can be found in the requests package advanced docs. Default is {}.

requests_timeout
[int] The timeout interval in seconds for HTTP requests, and (when applicable) for Overpass server to use for
executing the query. Default is 180.

use_cache
[bool] If True, cache HTTP responses locally in cache_folder instead of calling API repeatedly for the same
request. Default is True.

useful_tags_node
[list[str]] OSM “node” tags to add as graph node attributes, when present in the data retrieved from OSM. Default
is [“highway”, “junction”, “railway”, “ref”].

useful_tags_way
[list[str]] OSM “way” tags to add as graph edge attributes, when present in the data retrieved from OSM. Default is
[“access”, “area”, “bridge”, “est_width”, “highway”, “junction”, “landuse”, “lanes”, “maxspeed”, “name”,
“oneway”, “ref”, “service”, “tunnel”, “width”].

6.3.13 osmnx.simplification module

Simplify, correct, and consolidate spatial graph nodes and edges.

osmnx.simplification.consolidate_intersections(G, *, tolerance=10, rebuild_graph=True,
dead_ends=False, reconnect_edges=True,
node_attr_aggs=None)

Consolidate intersections comprising clusters of nearby nodes.

Merges nearby nodes and returns either their centroids or a rebuilt graph with consolidated intersections and
reconnected edge geometries. The tolerance argument can be a single value applied to all nodes or individual per-
node values. It should be adjusted to approximately match street design standards in the specific street network,
and you should use a projected graph to work in meaningful and consistent units like meters. Note: tolerance
represents a per-node buffering radius. For example, to consolidate nodes within 10 meters of each other, use
tolerance=5.

When rebuild_graph is False, it uses a purely geometric (and relatively fast) algorithm to identify “geometrically
close” nodes, merge them, and return the merged intersections’ centroids. When rebuild_graph is True, it uses
a topological (and slower but more accurate) algorithm to identify “topologically close” nodes, merge them,
then rebuild/return the graph. Returned graph’s node IDs represent clusters rather than “osmid” values. Refer
to nodes’ “osmid_original” attributes for original “osmid” values. If multiple nodes were merged together, the
“osmid_original” attribute is a list of merged nodes’ “osmid” values.

Divided roads are often represented by separate centerline edges. The intersection of two divided roads thus
creates 4 nodes, representing where each edge intersects a perpendicular edge. These 4 nodes represent a single
intersection in the real world. A similar situation occurs with roundabouts and traffic circles. This function
consolidates nearby nodes by buffering them to an arbitrary distance, merging overlapping buffers, and taking
their centroid.

Parameters

44 Chapter 6. Documentation

OSMnx, Release 2.0.0-dev

• G (nx.MultiDiGraph) – A projected graph.

• tolerance (float | dict[int, float]) – Nodes are buffered to this distance (in graph’s geom-
etry’s units) and subsequent overlaps are dissolved into a single node. If scalar, then that
single value will be used for all nodes. If dict (mapping node IDs to individual values), then
those values will be used per node and any missing node IDs will not be buffered.

• rebuild_graph (bool) – If True, consolidate the nodes topologically, rebuild the graph,
and return as MultiDiGraph. Otherwise, consolidate the nodes geometrically and return the
consolidated node points as GeoSeries.

• dead_ends (bool) – If False, discard dead-end nodes to return only street-intersection points.

• reconnect_edges (bool) – If True, reconnect edges (and their geometries) to the consol-
idated nodes in rebuilt graph, and update the edge length attributes. If False, the returned
graph has no edges (which is faster if you just need topologically consolidated intersection
counts). Ignored if rebuild_graph is not True.

• node_attr_aggs (dict[str, Any] | None) – Allows user to aggregate node attributes values
when merging nodes. Keys are node attribute names and values are aggregation functions
(anything accepted as an argument by pandas.agg). Node attributes not in node_attr_aggs
will contain the unique values across the merged nodes. If None, defaults to {“elevation”:
numpy.mean}.

Returns
G or gs – If rebuild_graph=True, returns MultiDiGraph with consolidated intersections and (op-
tionally) reconnected edge geometries. If rebuild_graph=False, returns GeoSeries of Points rep-
resenting the centroids of street intersections.

Return type
nx.MultiDiGraph | gpd.GeoSeries

osmnx.simplification.simplify_graph(G, *, node_attrs_include=None, edge_attrs_differ=None,
remove_rings=True, track_merged=False, edge_attr_aggs=None)

Simplify a graph’s topology by removing interstitial nodes.

This simplifies the graph’s topology by removing all nodes that are not intersections or dead-ends, by creating
an edge directly between the end points that encapsulate them while retaining the full geometry of the original
edges, saved as a new geometry attribute on the new edge.

Note that only simplified edges receive a geometry attribute. Some of the resulting consolidated edges may
comprise multiple OSM ways, and if so, their unique attribute values are stored as a list. Optionally, the simplified
edges can receive a merged_edges attribute that contains a list of all the (u, v) node pairs that were merged together.

Use the node_attrs_include or edge_attrs_differ parameters to relax simplification strictness. For example,
edge_attrs_differ=[“osmid”] will retain every node whose incident edges have different OSM IDs. This lets
you keep nodes at elbow two-way intersections (but be aware that sometimes individual blocks have multiple
OSM IDs within them too). You could also use this parameter to retain nodes where sidewalks or bike lanes
begin/end in the middle of a block. Or for example, node_attrs_include=[“highway”] will retain every node
with a “highway” attribute (regardless of its value), even if it does not represent a street junction.

Parameters

• G (MultiDiGraph) – Input graph.

• node_attrs_include (Iterable[str] | None) – Node attribute names for relaxing the
strictness of endpoint determination. A node is always an endpoint if it possesses one or
more of the attributes in node_attrs_include.

6.3. User Reference 45

OSMnx, Release 2.0.0-dev

• edge_attrs_differ (Iterable[str] | None) – Edge attribute names for relaxing the
strictness of endpoint determination. A node is always an endpoint if its incident edges
have different values than each other for any attribute in edge_attrs_differ.

• remove_rings (bool) – If True, remove any graph components that consist only of a single
chordless cycle (i.e., an isolated self-contained ring).

• track_merged (bool) – If True, add merged_edges attribute on simplified edges, containing
a list of all the (u, v) node pairs that were merged together.

• edge_attr_aggs (dict[str, Any] | None) – Allows user to aggregate edge segment at-
tributes when simplifying an edge. Keys are edge attribute names and values are aggrega-
tion functions to apply to these attributes when they exist for a set of edges being merged.
Edge attributes not in edge_attr_aggs will contain the unique values across the merged edge
segments. If None, defaults to {“length”: sum, “travel_time”: sum}.

Returns
G – Topologically simplified graph, with a new geometry attribute on each simplified edge.

Return type
networkx.MultiDiGraph

6.3.14 osmnx.stats module

Calculate geometric and topological network measures.

This module defines streets as the edges in an undirected representation of the graph. Using undirected graph edges
prevents double-counting bidirectional edges of a two-way street, but may double-count a divided road’s separate
centerlines with different end point nodes. Due to OSMnx’s periphery cleaning when the graph was created, you will
get accurate node degrees (and in turn streets-per-node counts) even at the periphery of the graph.

You can use NetworkX directly for additional topological network measures.

osmnx.stats.basic_stats(G, *, area=None, clean_int_tol=None)
Calculate basic descriptive geometric and topological measures of a graph.

Density measures are only calculated if area is provided and clean intersection measures are only calculated if
clean_int_tol is provided.

Parameters

• G (MultiDiGraph) – Input graph.

• area (float | None) – If not None, calculate density measures and use area (in square
meters) as the denominator.

• clean_int_tol (float | None) – If not None, calculate consolidated intersections count
(and density, if area is also provided) and use this tolerance value. Refer to the simplifica-
tion.consolidate_intersections function documentation for details.

Returns

dict[str, Any] – stats –

Dictionary containing the following keys:

• circuity_avg - see circuity_avg function documentation

• clean_intersection_count - see clean_intersection_count function documentation

• clean_intersection_density_km - clean_intersection_count per sq km

• edge_density_km - edge_length_total per sq km

46 Chapter 6. Documentation

OSMnx, Release 2.0.0-dev

• edge_length_avg - edge_length_total / m

• edge_length_total - see edge_length_total function documentation

• intersection_count - see intersection_count function documentation

• intersection_density_km - intersection_count per sq km

• k_avg - graph’s average node degree (in-degree and out-degree)

• m - count of edges in graph

• n - count of nodes in graph

• node_density_km - n per sq km

• self_loop_proportion - see self_loop_proportion function documentation

• street_density_km - street_length_total per sq km

• street_length_avg - street_length_total / street_segment_count

• street_length_total - see street_length_total function documentation

• street_segment_count - see street_segment_count function documentation

• streets_per_node_avg - see streets_per_node_avg function documentation

• streets_per_node_counts - see streets_per_node_counts function documentation

• streets_per_node_proportions - see streets_per_node_proportions function documenta-
tion

Return type
dict[str, Any]

osmnx.stats.circuity_avg(Gu)
Calculate average street circuity using edges of undirected graph.

Circuity is the sum of edge lengths divided by the sum of straight-line distances between edge endpoints. Cal-
culates straight-line distance as euclidean distance if projected or great-circle distance if unprojected. Returns
None if the edge lengths sum to zero.

Parameters
Gu (MultiGraph) – Undirected input graph.

Returns
circuity_avg – The graph’s average undirected edge circuity.

Return type
float | None

osmnx.stats.count_streets_per_node(G, *, nodes=None)
Count how many physical street segments connect to each node in a graph.

This function uses an undirected representation of the graph and special handling of self-loops to accurately count
physical streets rather than directed edges. Note: this function is automatically run by all the graph.graph_from_x
functions prior to truncating the graph to the requested boundaries, to add accurate street_count attributes to each
node even if some of its neighbors are outside the requested graph boundaries.

Parameters

• G (MultiDiGraph) – Input graph.

• nodes (Iterable[int] | None) – Which node IDs to get counts for. If None, use all graph
nodes. Otherwise calculate counts only for these node IDs.

6.3. User Reference 47

OSMnx, Release 2.0.0-dev

Returns
streets_per_node – Counts of how many physical streets connect to each node, with keys = node
ids and values = counts.

Return type
dict[int, int]

osmnx.stats.edge_length_total(G)
Calculate graph’s total edge length.

Parameters
G (MultiGraph) – Input graph.

Returns
length – Total length (meters) of edges in graph.

Return type
float

osmnx.stats.intersection_count(G, *, min_streets=2)
Count the intersections in a graph.

Intersections are defined as nodes with at least min_streets number of streets incident on them.

Parameters

• G (MultiDiGraph) – Input graph.

• min_streets (int) – A node must have at least min_streets incident on them to count as
an intersection.

Returns
count – Count of intersections in graph.

Return type
int

osmnx.stats.self_loop_proportion(Gu)
Calculate percent of edges that are self-loops in a graph.

A self-loop is defined as an edge from node u to node v where u==v.

Parameters
Gu (MultiGraph) – Undirected input graph.

Returns
proportion – Proportion of graph edges that are self-loops.

Return type
float

osmnx.stats.street_length_total(Gu)
Calculate graph’s total street segment length.

Parameters
Gu (MultiGraph) – Undirected input graph.

Returns
length – Total length (meters) of streets in graph.

Return type
float

48 Chapter 6. Documentation

OSMnx, Release 2.0.0-dev

osmnx.stats.street_segment_count(Gu)
Count the street segments in a graph.

Parameters
Gu (MultiGraph) – Undirected input graph.

Returns
count – Count of street segments in graph.

Return type
int

osmnx.stats.streets_per_node(G)
Retrieve nodes’ street_count attribute values.

See also the count_streets_per_node function for the calculation.

Parameters
G (MultiDiGraph) – Input graph.

Returns
spn – Dictionary with node ID keys and street count values.

Return type
dict[int, int]

osmnx.stats.streets_per_node_avg(G)
Calculate graph’s average count of streets per node.

Parameters
G (MultiDiGraph) – Input graph.

Returns
spna – Average count of streets per node.

Return type
float

osmnx.stats.streets_per_node_counts(G)
Calculate streets-per-node counts.

Parameters
G (MultiDiGraph) – Input graph.

Returns
spnc – Dictionary keyed by count of streets incident on each node, and with values of how many
nodes in the graph have this count.

Return type
dict[int, int]

osmnx.stats.streets_per_node_proportions(G)
Calculate streets-per-node proportions.

Parameters
G (MultiDiGraph) – Input graph.

Returns
spnp – Dictionary keyed by count of streets incident on each node, and with values of what
proportion of nodes in the graph have this count.

Return type
dict[int, float]

6.3. User Reference 49

OSMnx, Release 2.0.0-dev

6.3.15 osmnx.truncate module

Truncate graph by distance, bounding box, or polygon.

osmnx.truncate.largest_component(G, *, strongly=False)
Return G’s largest weakly or strongly connected component as a graph.

Parameters

• G (MultiDiGraph) – Input graph.

• strongly (bool) – If True, return the largest strongly connected component. Otherwise
return the largest weakly connected component.

Returns
G – The largest connected component subgraph of the original graph.

Return type
networkx.MultiDiGraph

osmnx.truncate.truncate_graph_bbox(G, bbox, *, truncate_by_edge=False)
Remove from a graph every node that falls outside a bounding box.

Parameters

• G (MultiDiGraph) – Input graph.

• bbox (tuple[float, float, float, float]) – Bounding box as (north, south, east, west).

• truncate_by_edge (bool) – If True, retain nodes outside bounding box if at least one of
node’s neighbors is within the bounding box.

Returns
G – The truncated graph.

Return type
networkx.MultiDiGraph

osmnx.truncate.truncate_graph_dist(G, source_node, dist, *, weight='length')
Remove from a graph every node beyond some network distance from a node.

This function must calculate shortest path distances between source_node and every other graph node, which
can be slow on large graphs.

Parameters

• G (MultiDiGraph) – Input graph.

• source_node (int) – Node from which to measure network distances to all other nodes.

• dist (float) – Remove every node in the graph that is greater than dist distance (in same
units as weight attribute) along the network from source_node.

• weight (str) – Graph edge attribute to use to measure distance.

Returns
G – The truncated graph.

Return type
networkx.MultiDiGraph

osmnx.truncate.truncate_graph_polygon(G, polygon, *, truncate_by_edge=False)
Remove from a graph every node that falls outside a (Multi)Polygon.

Parameters

50 Chapter 6. Documentation

OSMnx, Release 2.0.0-dev

• G (nx.MultiDiGraph) – Input graph.

• polygon (Polygon | MultiPolygon) – Only retain nodes in graph that lie within this geometry.

• truncate_by_edge (bool) – If True, retain nodes outside boundary polygon if at least one
of node’s neighbors is within the polygon.

Returns
G – The truncated graph.

Return type
nx.MultiDiGraph

6.3.16 osmnx.utils module

General utility functions.

osmnx.utils.citation(style='bibtex')
Print the OSMnx package’s citation information.

Boeing, G. (2024). Modeling and Analyzing Urban Networks and Amenities with OSMnx. Working paper.
https://geoffboeing.com/publications/osmnx-paper/

Parameters
style (str) – {“apa”, “bibtex”, “ieee”} The citation format, either APA or BibTeX or IEEE.

Returns
None – None

Return type
None

osmnx.utils.log(message, level=None, name=None, filename=None)
Write a message to the logger.

This logs to file and/or prints to the console (terminal), depending on the current configuration of settings.log_file
and settings.log_console.

Parameters

• message (str) – The message to log.

• level (int | None) – One of the Python logger.level constants. If None, set to set-
tings.log_level value.

• name (str | None) – The name of the logger. If None, set to settings.log_name value.

• filename (str | None) – The name of the log file, without file extension. If None, set to
settings.log_filename value.

Returns
None – None

Return type
None

osmnx.utils.ts(style='datetime', template=None)
Return current local timestamp as a string.

Parameters

• style (str) – {“datetime”, “iso8601”, “date”, “time”} Format the timestamp with this built-
in style.

6.3. User Reference 51

https://geoffboeing.com/publications/osmnx-paper/

OSMnx, Release 2.0.0-dev

• template (str | None) – If not None, format the timestamp with this format string instead
of one of the built-in styles.

Returns
str – timestamp

Return type
str

6.3.17 osmnx.utils_geo module

Geospatial utility functions.

osmnx.utils_geo.bbox_from_point(point, dist, *, project_utm=False, return_crs=False)
Create a bounding box around a (lat, lon) point.

Create a bounding box some distance (in meters) in each direction (north, south, east, and west) from the center
point and optionally project it.

Parameters

• point (tuple[float, float]) – The (lat, lon) center point to create the bounding box
around.

• dist (float) – Bounding box distance in meters from the center point.

• project_utm (bool) – If True, return bounding box as UTM-projected coordinates.

• return_crs (bool) – If True, and project_utm is True, then return the projected CRS too.

Returns
bbox or bbox, crs – (north, south, east, west) or ((north, south, east, west), crs).

Return type
tuple[float, float, float, float] | tuple[tuple[float, float, float, float], Any]

osmnx.utils_geo.bbox_to_poly(bbox)
Convert bounding box coordinates to Shapely Polygon.

Parameters
bbox (tuple[float, float, float, float]) – Bounding box as (north, south, east, west).

Returns
Polygon – polygon

Return type
shapely.Polygon

osmnx.utils_geo.interpolate_points(geom, dist)
Interpolate evenly spaced points along a LineString.

The spacing is approximate because the LineString’s length may not be evenly divisible by it.

Parameters

• geom (LineString) – A LineString geometry.

• dist (float) – Spacing distance between interpolated points, in same units as geom.
Smaller values accordingly generate more points.

Yields
point – Interpolated point’s (x, y) coordinates.

52 Chapter 6. Documentation

OSMnx, Release 2.0.0-dev

Return type
Iterator[tuple[float, float]]

osmnx.utils_geo.sample_points(G, n)
Randomly sample points constrained to a spatial graph.

This generates a graph-constrained uniform random sample of points. Unlike typical spatially uniform random
sampling, this method accounts for the graph’s geometry. And unlike equal-length edge segmenting, this method
guarantees uniform randomness.

Parameters

• G (MultiGraph) – Graph from which to sample points. Should be undirected (to avoid
oversampling bidirectional edges) and projected (for accurate point interpolation).

• n (int) – How many points to sample.

Returns
point – The sampled points, multi-indexed by (u, v, key) of the edge from which each point was
sampled.

Return type
geopandas.GeoSeries

6.4 Internals Reference

This is the complete OSMnx internals reference for developers, including private internal modules and functions. If
you are instead looking for a user guide to OSMnx’s public API, see the User Reference.

6.4.1 osmnx.bearing module

Calculate graph edge bearings and orientation entropy.

osmnx.bearing._bearings_distribution(G, num_bins, min_length, weight)
Compute distribution of bearings across evenly spaced bins.

Prevents bin-edge effects around common values like 0 degrees and 90 degrees by initially creating twice as
many bins as desired, then merging them in pairs. For example, if num_bins=36 is provided, then each bin will
represent 10 degrees around the compass, with the first bin representing 355 degrees to 5 degrees.

Parameters

• G (nx.MultiGraph | nx.MultiDiGraph) – Unprojected graph with bearing attributes on each
edge.

• num_bins (int) – Number of bins for the bearing histogram.

• min_length (float) – Ignore edges with length attributes less than min_length. Useful to
ignore the noise of many very short edges.

• weight (str | None) – If None, apply equal weight for each bearing. Otherwise, weight edges’
bearings by this (non-null) edge attribute. For example, if “length” is provided, each edge’s
bearing observation will be weighted by its “length” attribute value.

Returns
bin_counts, bin_centers – Counts of bearings per bin and the bins’ centers in degrees. Both arrays
are of length num_bins.

6.4. Internals Reference 53

OSMnx, Release 2.0.0-dev

Return type
tuple[npt.NDArray[np.float64], npt.NDArray[np.float64]]

osmnx.bearing._extract_edge_bearings(G, min_length, weight)
Extract graph’s edge bearings.

Ignores self-loop edges as their bearings are undefined. If G is a MultiGraph, all edge bearings will be bidi-
rectional (ie, two reciprocal bearings per undirected edge). If G is a MultiDiGraph, all edge bearings will be
directional (ie, one bearing per directed edge). For example, if an undirected edge has a bearing of 90 degrees
then we will record bearings of both 90 degrees and 270 degrees for this edge.

Parameters

• G (nx.MultiGraph | nx.MultiDiGraph) – Unprojected graph with bearing attributes on each
edge.

• min_length (float) – Ignore edges with length attributes less than min_length. Useful to
ignore the noise of many very short edges.

• weight (str | None) – If None, apply equal weight for each bearing. Otherwise, weight edges’
bearings by this (non-null) edge attribute. For example, if “length” is provided, each edge’s
bearing observation will be weighted by its “length” attribute value.

Returns
bearings, weights – The edge bearings of G and their corresponding weights.

Return type
tuple[npt.NDArray[np.float64], npt.NDArray[np.float64]]

osmnx.bearing.add_edge_bearings(G)
Calculate and add compass bearing attributes to all graph edges.

Vectorized function to calculate (initial) bearing from origin node to destination node for each edge in a directed,
unprojected graph then add these bearings as new bearing edge attributes. Bearing represents angle in degrees
(clockwise) between north and the geodesic line from the origin node to the destination node. Ignores self-loop
edges as their bearings are undefined.

Parameters
G (MultiDiGraph) – Unprojected graph.

Returns
G – Graph with bearing attributes on the edges.

Return type
networkx.MultiDiGraph

osmnx.bearing.calculate_bearing(lat1, lon1, lat2, lon2)
Calculate the compass bearing(s) between pairs of lat-lon points.

Vectorized function to calculate initial bearings between two points’ coordinates or between arrays of points’
coordinates. Expects coordinates in decimal degrees. The bearing represents the clockwise angle in degrees
between north and the geodesic line from (lat1, lon1) to (lat2, lon2).

Parameters

• lat1 (float | npt.NDArray[np.float64]) – First point’s latitude coordinate(s).

• lon1 (float | npt.NDArray[np.float64]) – First point’s longitude coordinate(s).

• lat2 (float | npt.NDArray[np.float64]) – Second point’s latitude coordinate(s).

• lon2 (float | npt.NDArray[np.float64]) – Second point’s longitude coordinate(s).

54 Chapter 6. Documentation

OSMnx, Release 2.0.0-dev

Returns
bearing – The bearing(s) in decimal degrees.

Return type
float | npt.NDArray[np.float64]

osmnx.bearing.orientation_entropy(G, *, num_bins=36, min_length=0, weight=None)
Calculate graph’s orientation entropy.

Orientation entropy is the Shannon entropy of the graphs’ edges’ bearings across evenly spaced bins. Ignores
self-loop edges as their bearings are undefined. If G is a MultiGraph, all edge bearings will be bidirectional (ie,
two reciprocal bearings per undirected edge). If G is a MultiDiGraph, all edge bearings will be directional (ie,
one bearing per directed edge).

For more info see: Boeing, G. 2019. “Urban Spatial Order: Street Network Orientation, Configuration, and
Entropy.” Applied Network Science, 4 (1), 67. https://doi.org/10.1007/s41109-019-0189-1

Parameters

• G (nx.MultiGraph | nx.MultiDiGraph) – Unprojected graph with bearing attributes on each
edge.

• num_bins (int) – Number of bins. For example, if num_bins=36 is provided, then each bin
will represent 10 degrees around the compass.

• min_length (float) – Ignore edges with “length” attributes less than min_length. Useful to
ignore the noise of many very short edges.

• weight (str | None) – If None, apply equal weight for each bearing. Otherwise, weight edges’
bearings by this (non-null) edge attribute. For example, if “length” is provided, each edge’s
bearing observation will be weighted by its “length” attribute value.

Returns
entropy – The orientation entropy of G.

Return type
float

6.4.2 osmnx.convert module

Convert spatial graphs to/from different data types.

osmnx.convert._is_duplicate_edge(data1, data2)
Check if two graph edge data dicts have the same osmid and geometry.

Parameters

• data1 (dict[str, Any]) – The first edge’s attribute data.

• data2 (dict[str, Any]) – The second edge’s attribute data.

Returns
bool – is_dupe

Return type
bool

osmnx.convert._is_same_geometry(ls1, ls2)
Determine if two LineString geometries are the same (in either direction).

Check both the normal and reversed orders of their constituent points.

6.4. Internals Reference 55

https://doi.org/10.1007/s41109-019-0189-1

OSMnx, Release 2.0.0-dev

Parameters

• ls1 (LineString) – The first LineString geometry.

• ls2 (LineString) – The second LineString geometry.

Returns
bool – is_same

Return type
bool

osmnx.convert._update_edge_keys(G)
Increment key of one edge of parallel edges that differ in geometry.

For example, two streets from u to v that bow away from each other as separate streets, rather than opposite
direction edges of a single street. Increment one of these edge’s keys so that they do not match across (u, v, k) or
(v, u, k) so we can add both to an undirected MultiGraph.

Parameters
G (MultiDiGraph) – Input graph.

Returns
MultiDiGraph – G

Return type
networkx.MultiDiGraph

osmnx.convert.graph_from_gdfs(gdf_nodes, gdf_edges, *, graph_attrs=None)
Convert node and edge GeoDataFrames to a MultiDiGraph.

This function is the inverse of graph_to_gdfs and is designed to work in conjunction with it. However, you
can convert arbitrary node and edge GeoDataFrames as long as 1) gdf_nodes is uniquely indexed by osmid, 2)
gdf_nodes contains x and y coordinate columns representing node geometries, 3) gdf_edges is uniquely multi-
indexed by (u, v, key) (following normal MultiDiGraph structure). This allows you to load any node/edge Shape-
files or GeoPackage layers as GeoDataFrames then convert them to a MultiDiGraph for network analysis.

Note that any geometry attribute on gdf_nodes is discarded, since x and y provide the necessary node geometry
information instead.

Parameters

• gdf_nodes (GeoDataFrame) – GeoDataFrame of graph nodes uniquely indexed by osmid.

• gdf_edges (GeoDataFrame) – GeoDataFrame of graph edges uniquely multi-indexed by
(u, v, key).

• graph_attrs (dict[str, Any] | None) – The new G.graph attribute dictionary. If None,
use gdf_edges’s CRS as the only graph-level attribute (gdf_edges must have its crs attribute
set).

Returns
MultiDiGraph – G

Return type
networkx.MultiDiGraph

osmnx.convert.graph_to_gdfs(G, *, nodes=True, edges=True, node_geometry=True,
fill_edge_geometry=True)

Convert a MultiGraph or MultiDiGraph to node and/or edge GeoDataFrames.

This function is the inverse of graph_from_gdfs.

Parameters

56 Chapter 6. Documentation

OSMnx, Release 2.0.0-dev

• G (nx.MultiGraph | nx.MultiDiGraph) – Input graph.

• nodes (bool) – If True, convert graph nodes to a GeoDataFrame and return it.

• edges (bool) – If True, convert graph edges to a GeoDataFrame and return it.

• node_geometry (bool) – If True, create a geometry column from node “x” and “y” at-
tributes.

• fill_edge_geometry (bool) – If True, fill missing edge geometry fields using endpoint
nodes’ coordinates to create a LineString.

Returns
gdf_nodes or gdf_edges or (gdf_nodes, gdf_edges) – gdf_nodes is indexed by osmid and
gdf_edges is multi-indexed by (u, v, key) following normal MultiGraph/MultiDiGraph structure.

Return type
gpd.GeoDataFrame | tuple[gpd.GeoDataFrame, gpd.GeoDataFrame]

osmnx.convert.to_digraph(G, *, weight='length')
Convert MultiDiGraph to DiGraph.

Chooses between parallel edges by minimizing weight attribute value. See also to_undirected to convert Multi-
DiGraph to MultiGraph.

Parameters

• G (MultiDiGraph) – Input graph.

• weight (str) – Attribute value to minimize when choosing between parallel edges.

Returns
DiGraph – G

Return type
networkx.DiGraph

osmnx.convert.to_undirected(G)
Convert MultiDiGraph to undirected MultiGraph.

Maintains parallel edges only if their geometries differ. See also to_digraph to convert MultiDiGraph to DiGraph.

Parameters
G (MultiDiGraph) – Input graph.

Returns
MultiGraph – Gu

Return type
networkx.MultiGraph

6.4.3 osmnx.distance module

Calculate distances and find nearest graph node/edge(s) to point(s).

osmnx.distance.add_edge_lengths(G, *, edges=None)
Calculate and add length attribute (in meters) to each edge.

Vectorized function to calculate great-circle distance between each edge’s incident nodes. Ensure graph is un-
projected and unsimplified to calculate accurate distances.

Note: this function is run by all the graph.graph_from_x functions automatically to add length attributes to all
edges. It calculates edge lengths as the great-circle distance from node u to node v. When OSMnx automatically

6.4. Internals Reference 57

OSMnx, Release 2.0.0-dev

runs this function upon graph creation, it does it before simplifying the graph: thus it calculates the straight-line
lengths of edge segments that are themselves all straight. Only after simplification do edges take on (potentially)
curvilinear geometry. If you wish to calculate edge lengths later, note that you will be calculating straight-line
distances which necessarily ignore the curvilinear geometry. Thus you only want to run this function on a graph
with all straight edges (such as is the case with an unsimplified graph).

Parameters

• G (MultiDiGraph) – Unprojected and unsimplified input graph.

• edges (Iterable[tuple[int, int, int]] | None) – The subset of edges to add length at-
tributes to, as (u, v, k) tuples. If None, add lengths to all edges.

Returns
G – Graph with length attributes on the edges.

Return type
networkx.MultiDiGraph

osmnx.distance.euclidean(y1, x1, y2, x2)
Calculate Euclidean distances between pairs of points.

Vectorized function to calculate the Euclidean distance between two points’ coordinates or between arrays of
points’ coordinates. For accurate results, use projected coordinates rather than decimal degrees.

Parameters

• y1 (float | npt.NDArray[np.float64]) – First point’s y coordinate(s).

• x1 (float | npt.NDArray[np.float64]) – First point’s x coordinate(s).

• y2 (float | npt.NDArray[np.float64]) – Second point’s y coordinate(s).

• x2 (float | npt.NDArray[np.float64]) – Second point’s x coordinate(s).

Returns
dist – Distance from each (x1, y1) point to each (x2, y2) point in same units as the points’ coor-
dinates.

Return type
float | npt.NDArray[np.float64]

osmnx.distance.great_circle(lat1, lon1, lat2, lon2, earth_radius=6371009)
Calculate great-circle distances between pairs of points.

Vectorized function to calculate the great-circle distance between two points’ coordinates or between arrays of
points’ coordinates using the haversine formula. Expects coordinates in decimal degrees.

Parameters

• lat1 (float | npt.NDArray[np.float64]) – First point’s latitude coordinate(s).

• lon1 (float | npt.NDArray[np.float64]) – First point’s longitude coordinate(s).

• lat2 (float | npt.NDArray[np.float64]) – Second point’s latitude coordinate(s).

• lon2 (float | npt.NDArray[np.float64]) – Second point’s longitude coordinate(s).

• earth_radius (float) – Earth’s radius in units in which distance will be returned (default
represents meters).

Returns
dist – Distance from each (lat1, lon1) point to each (lat2, lon2) point in units of earth_radius.

58 Chapter 6. Documentation

OSMnx, Release 2.0.0-dev

Return type
float | npt.NDArray[np.float64]

osmnx.distance.nearest_edges(G, X, Y , *, return_dist=False)
Find the nearest edge to a point or to each of several points.

If X and Y are single coordinate values, this will return the nearest edge to that point. If X and Y are iterables of
coordinate values, this will return the nearest edge to each point. This uses an R-tree spatial index and minimizes
the Euclidean distance from each point to the possible matches. For accurate results, use a projected graph and
points.

Parameters

• G (nx.MultiDiGraph) – Graph in which to find nearest edges.

• X (float | Iterable[float]) – The points’ x (longitude) coordinates, in same CRS/units as graph
and containing no nulls.

• Y (float | Iterable[float]) – The points’ y (latitude) coordinates, in same CRS/units as graph
and containing no nulls.

• return_dist (bool) – If True, optionally also return the distance(s) between point(s) and
nearest edge(s).

Returns
ne or (ne, dist) – Nearest edge ID(s) as (u, v, k) tuples, or optionally a tuple of ID(s) and distance(s)
between each point and its nearest edge.

Return type
tuple[int, int, int] | npt.NDArray[np.object_] | tuple[tuple[int, int, int], float] | tu-
ple[npt.NDArray[np.object_], npt.NDArray[np.float64]]

osmnx.distance.nearest_nodes(G, X, Y , *, return_dist=False)
Find the nearest node to a point or to each of several points.

If X and Y are single coordinate values, this will return the nearest node to that point. If X and Y are iterables of
coordinate values, this will return the nearest node to each point.

If the graph is projected, this uses a k-d tree for Euclidean nearest neighbor search, which requires that scipy
is installed as an optional dependency. If it is unprojected, this uses a ball tree for haversine nearest neighbor
search, which requires that scikit-learn is installed as an optional dependency.

Parameters

• G (nx.MultiDiGraph) – Graph in which to find nearest nodes.

• X (float | Iterable[float]) – The points’ x (longitude) coordinates, in same CRS/units as graph
and containing no nulls.

• Y (float | Iterable[float]) – The points’ y (latitude) coordinates, in same CRS/units as graph
and containing no nulls.

• return_dist (bool) – If True, optionally also return the distance(s) between point(s) and
nearest node(s).

Returns
nn or (nn, dist) – Nearest node ID(s) or optionally a tuple of ID(s) and distance(s) between each
point and its nearest node.

Return type
int | npt.NDArray[np.int64] | tuple[int, float] | tuple[npt.NDArray[np.int64],
npt.NDArray[np.float64]]

6.4. Internals Reference 59

OSMnx, Release 2.0.0-dev

6.4.4 osmnx.elevation module

Add node elevations from raster files or web APIs, and calculate edge grades.

osmnx.elevation._elevation_request(url, pause)
Send a HTTP GET request to a Google Maps-style Elevation API.

Parameters

• url (str) – URL of API endpoint, populated with request data.

• pause (float) – How long to pause in seconds before request.

Returns
dict[str, Any] – response_json

Return type
dict[str, Any]

osmnx.elevation._query_raster(nodes, filepath, band)
Query a raster file for values at coordinates in DataFrame x/y columns.

Parameters

• nodes (DataFrame) – DataFrame indexed by node ID and with two columns representing x
and y coordinates.

• filepath (str | Path) – Path to the raster file or VRT to query.

• band (int) – Which raster band to query.

Returns
nodes_values – Zip of node IDs and corresponding raster values.

Return type
Iterable[tuple[int, Any]]

osmnx.elevation.add_edge_grades(G, *, add_absolute=True)
Calculate and add grade attributes to all graph edges.

Vectorized function to calculate the directed grade (i.e., rise over run) for each edge in the graph and add it to
the edge as an attribute. Nodes must already have elevation and length attributes before using this function.

See also the add_node_elevations_raster and add_node_elevations_google functions.

Parameters

• G (MultiDiGraph) – Graph with elevation node attributes.

• add_absolute (bool) – If True, also add absolute value of grade as grade_abs attribute.

Returns
G – Graph with grade (and optionally grade_abs) attributes on the edges.

Return type
networkx.MultiDiGraph

osmnx.elevation.add_node_elevations_google(G, *, api_key=None, batch_size=512, pause=0)
Add elevation (meters) attributes to all nodes using a web service.

By default, this uses the Google Maps Elevation API but you can optionally use an equivalent API with the same
interface and response format, such as Open Topo Data, via the settings module’s elevation_url_template. The
Google Maps Elevation API requires an API key but other providers may not. You can find more information
about the Google Maps Elevation API at: https://developers.google.com/maps/documentation/elevation

60 Chapter 6. Documentation

https://developers.google.com/maps/documentation/elevation

OSMnx, Release 2.0.0-dev

For a free local alternative see the add_node_elevations_raster function. See also the add_edge_grades function.

Parameters

• G (MultiDiGraph) – Graph to add elevation data to.

• api_key (str | None) – A valid API key. Can be None if the API does not require a key.

• batch_size (int) – Max number of coordinate pairs to submit in each request (depends on
provider’s limits). Google’s limit is 512.

• pause (float) – How long to pause in seconds between API calls, which can be increased
if you get rate limited.

Returns
G – Graph with elevation attributes on the nodes.

Return type
networkx.MultiDiGraph

osmnx.elevation.add_node_elevations_raster(G, filepath, *, band=1, cpus=None)
Add elevation attributes to all nodes from local raster file(s).

If filepath is an iterable of paths, this will generate a virtual raster composed of the files at those paths as an
intermediate step.

See also the add_edge_grades function.

Parameters

• G (MultiDiGraph) – Graph in same CRS as raster.

• filepath (str | Path | Iterable[str | Path]) – The path(s) to the raster file(s) to query.

• band (int) – Which raster band to query.

• cpus (int | None) – How many CPU cores to use. If None, use all available.

Returns
G – Graph with elevation attributes on the nodes.

Return type
networkx.MultiDiGraph

6.4.5 osmnx._errors module

Define custom errors and exceptions.

exception osmnx._errors.CacheOnlyInterruptError

Exception for settings.cache_only_mode=True interruption.

exception osmnx._errors.GraphSimplificationError

Exception for a problem with graph simplification.

exception osmnx._errors.InsufficientResponseError

Exception for empty or too few results in server response.

exception osmnx._errors.ResponseStatusCodeError

Exception for an unhandled server response status code.

6.4. Internals Reference 61

OSMnx, Release 2.0.0-dev

6.4.6 osmnx.features module

Download and create GeoDataFrames from OpenStreetMap geospatial features.

Retrieve points of interest, building footprints, transit lines/stops, or any other map features from OSM, including their
geometries and attribute data, then construct a GeoDataFrame of them. You can use this module to query for nodes,
ways, and relations (the latter of type “multipolygon” or “boundary” only) by passing a dictionary of desired OSM tags.

For more details, see https://wiki.openstreetmap.org/wiki/Map_features and https://wiki.openstreetmap.org/wiki/
Elements

Refer to the Getting Started guide for usage limitations.

osmnx.features._build_relation_geometry(members, way_geoms)
Build a relation’s geometry from its constituent member ways’ geometries.

OSM represents simple polygons as closed ways (see _build_way_geometry), but it uses relations to represent
multipolygons (with or without holes) and polygons with holes. For the former, the relation contains multiple
members with role “outer”. For the latter, the relation contains at least one member with role “outer” representing
the shell(s), and at least one member with role “inner” representing the hole(s). For documentation, see https:
//wiki.openstreetmap.org/wiki/Relation:multipolygon

Parameters

• members (list[dict[str, Any]]) – The members constituting the relation.

• way_geoms (dict[int, LineString | Polygon]) – Keyed by OSM way ID with values of their
geometries.

Returns
Polygon | MultiPolygon – geometry

Return type
Polygon | MultiPolygon

osmnx.features._build_way_geometry(way_id, way_nodes, way_tags, node_coords)
Build a way’s geometry from its constituent nodes’ coordinates.

A way can be a LineString (open or closed way) or a Polygon (closed way) but multi-geometries and polygons with
holes are represented as relations. See documentation: https://wiki.openstreetmap.org/wiki/Way#Types_of_way

Parameters

• way_id (int) – The way’s OSM ID.

• way_nodes (list[int]) – The way’s constituent nodes.

• way_tags (dict[str, Any]) – The way’s tags.

• node_coords (dict[int, tuple[float, float]]) – Keyed by OSM node ID with values of (lat,
lon) coordinate tuples.

Returns
LineString | Polygon – geometry

Return type
LineString | Polygon

osmnx.features._create_gdf(response_jsons, polygon, tags)
Convert Overpass API JSON responses to a GeoDataFrame of features.

Parameters

• response_jsons (Iterable[dict[str, Any]]) – Iterable of Overpass API JSON responses.

62 Chapter 6. Documentation

https://wiki.openstreetmap.org/wiki/Map_features
https://wiki.openstreetmap.org/wiki/Elements
https://wiki.openstreetmap.org/wiki/Elements
https://wiki.openstreetmap.org/wiki/Relation:multipolygon
https://wiki.openstreetmap.org/wiki/Relation:multipolygon
https://wiki.openstreetmap.org/wiki/Way#Types_of_way

OSMnx, Release 2.0.0-dev

• polygon (Polygon | MultiPolygon) – Spatial boundaries to optionally filter the final Geo-
DataFrame.

• tags (dict[str, bool | str | list[str]]) – Query tags to optionally filter the final GeoDataFrame.

Returns
gdf – GeoDataFrame of features with tags and geometry columns.

Return type
gpd.GeoDataFrame

osmnx.features._filter_features(gdf , polygon, tags)
Filter features GeoDataFrame by spatial boundaries and query tags.

If the polygon and tags arguments are empty objects, the final GeoDataFrame will not be filtered accordingly.

Parameters

• gdf (gpd.GeoDataFrame) – Original GeoDataFrame of features.

• polygon (Polygon | MultiPolygon) – If not empty, the spatial boundaries to filter the Geo-
DataFrame.

• tags (dict[str, bool | str | list[str]]) – If not empty, the query tags to filter the GeoDataFrame.

Returns
gdf – Filtered GeoDataFrame of features.

Return type
gpd.GeoDataFrame

osmnx.features._process_features(elements, query_tag_keys)
Convert node/way/relation elements into features with geometries.

Parameters

• elements (list[dict[str, Any]]) – The node/way/relation elements retrieved from the
server.

• query_tag_keys (set[str]) – The keys of the tags used to query for matching features.

Returns
list[dict[str, Any]] – features

Return type
list[dict[str, Any]]

osmnx.features._remove_polygon_holes(outer_polygons, inner_polygons)
Subtract inner holes from outer polygons.

This allows possible island polygons within a larger polygon’s holes.

Parameters

• outer_polygons (list[Polygon]) – Polygons, including possible islands within a larger poly-
gon’s holes.

• inner_polygons (list[Polygon]) – Inner holes to subtract from the outer polygons that con-
tain them.

Returns
Polygon | MultiPolygon – geometry

Return type
Polygon | MultiPolygon

6.4. Internals Reference 63

OSMnx, Release 2.0.0-dev

osmnx.features.features_from_address(address, tags, dist)
Download OSM features within some distance of an address.

You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure
the Overpass server timeout, memory allocation, and other custom settings. This function searches for features
using tags. For more details, see: https://wiki.openstreetmap.org/wiki/Map_features

Parameters

• address (str) – The address to geocode and use as the center point around which to retrieve
the features.

• tags (dict[str, bool | str | list[str]]) – Tags for finding elements in the selected area.
Results are the union, not intersection of the tags and each result matches at least one tag.
The keys are OSM tags (e.g., building, landuse, highway, etc) and the values can be ei-
ther True to retrieve all elements matching the tag, or a string to retrieve a single tag:value
combination, or a list of strings to retrieve multiple values for the tag. For example, tags
= {‘building’: True} would return all buildings in the area. Or, tags = {‘amenity’:True,
‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, any lan-
duse=retail, any landuse=commercial, and any highway=bus_stop.

• dist (float) – Distance in meters from address to create a bounding box to query.

Returns
GeoDataFrame – gdf

Return type
geopandas.GeoDataFrame

osmnx.features.features_from_bbox(bbox, tags)
Download OSM features within a lat-lon bounding box.

You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure
the Overpass server timeout, memory allocation, and other custom settings. This function searches for features
using tags. For more details, see: https://wiki.openstreetmap.org/wiki/Map_features

Parameters

• bbox (tuple[float, float, float, float]) – Bounding box as (north, south, east, west).
Coordinates should be in unprojected latitude-longitude degrees (EPSG:4326).

• tags (dict[str, bool | str | list[str]]) – Tags for finding elements in the selected area.
Results are the union, not intersection of the tags and each result matches at least one tag.
The keys are OSM tags (e.g., building, landuse, highway, etc) and the values can be ei-
ther True to retrieve all elements matching the tag, or a string to retrieve a single tag:value
combination, or a list of strings to retrieve multiple values for the tag. For example, tags
= {‘building’: True} would return all buildings in the area. Or, tags = {‘amenity’:True,
‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, any lan-
duse=retail, any landuse=commercial, and any highway=bus_stop.

Returns
GeoDataFrame – gdf

Return type
geopandas.GeoDataFrame

osmnx.features.features_from_place(query, tags, *, which_result=None)
Download OSM features within the boundaries of some place(s).

64 Chapter 6. Documentation

https://wiki.openstreetmap.org/wiki/Map_features
tag:value
https://wiki.openstreetmap.org/wiki/Map_features
tag:value

OSMnx, Release 2.0.0-dev

The query must be geocodable and OSM must have polygon boundaries for the geocode result. If OSM does not
have a polygon for this place, you can instead get features within it using the features_from_address function,
which geocodes the place name to a point and gets the features within some distance of that point.

If OSM does have polygon boundaries for this place but you’re not finding it, try to vary the query string, pass
in a structured query dict, or vary the which_result argument to use a different geocode result. If you know the
OSM ID of the place, you can retrieve its boundary polygon using the geocode_to_gdf function, then pass it to
the features_from_polygon function.

You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure
the Overpass server timeout, memory allocation, and other custom settings. This function searches for features
using tags. For more details, see: https://wiki.openstreetmap.org/wiki/Map_features

Parameters

• query (str | dict[str, str] | list[str | dict[str, str]]) – The query or queries to
geocode to retrieve place boundary polygon(s).

• tags (dict[str, bool | str | list[str]]) – Tags for finding elements in the selected area.
Results are the union, not intersection of the tags and each result matches at least one tag.
The keys are OSM tags (e.g., building, landuse, highway, etc) and the values can be ei-
ther True to retrieve all elements matching the tag, or a string to retrieve a single tag:value
combination, or a list of strings to retrieve multiple values for the tag. For example, tags
= {‘building’: True} would return all buildings in the area. Or, tags = {‘amenity’:True,
‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, any lan-
duse=retail, any landuse=commercial, and any highway=bus_stop.

• which_result (int | None | list[int | None]) – Which search result to return. If None,
auto-select the first (Multi)Polygon or raise an error if OSM doesn’t return one.

Returns
GeoDataFrame – gdf

Return type
geopandas.GeoDataFrame

osmnx.features.features_from_point(center_point, tags, dist)
Download OSM features within some distance of a lat-lon point.

You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure
the Overpass server timeout, memory allocation, and other custom settings. This function searches for features
using tags. For more details, see: https://wiki.openstreetmap.org/wiki/Map_features

Parameters

• center_point (tuple[float, float]) – The (lat, lon) center point around which to
retrieve the features. Coordinates should be in unprojected latitude-longitude degrees
(EPSG:4326).

• tags (dict[str, bool | str | list[str]]) – Tags for finding elements in the selected area.
Results are the union, not intersection of the tags and each result matches at least one tag.
The keys are OSM tags (e.g., building, landuse, highway, etc) and the values can be ei-
ther True to retrieve all elements matching the tag, or a string to retrieve a single tag:value
combination, or a list of strings to retrieve multiple values for the tag. For example, tags
= {‘building’: True} would return all buildings in the area. Or, tags = {‘amenity’:True,
‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, any lan-
duse=retail, any landuse=commercial, and any highway=bus_stop.

• dist (float) – Distance in meters from center_point to create a bounding box to query.

6.4. Internals Reference 65

https://wiki.openstreetmap.org/wiki/Map_features
tag:value
https://wiki.openstreetmap.org/wiki/Map_features
tag:value

OSMnx, Release 2.0.0-dev

Returns
GeoDataFrame – gdf

Return type
geopandas.GeoDataFrame

osmnx.features.features_from_polygon(polygon, tags)
Download OSM features within the boundaries of a (Multi)Polygon.

You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure
the Overpass server timeout, memory allocation, and other custom settings. This function searches for features
using tags. For more details, see: https://wiki.openstreetmap.org/wiki/Map_features

Parameters

• polygon (Polygon | MultiPolygon) – The geometry within which to retrieve features. Coor-
dinates should be in unprojected latitude-longitude degrees (EPSG:4326).

• tags (dict[str, bool | str | list[str]]) – Tags for finding elements in the selected area. Re-
sults are the union, not intersection of the tags and each result matches at least one tag.
The keys are OSM tags (e.g., building, landuse, highway, etc) and the values can be ei-
ther True to retrieve all elements matching the tag, or a string to retrieve a single tag:value
combination, or a list of strings to retrieve multiple values for the tag. For example, tags
= {‘building’: True} would return all buildings in the area. Or, tags = {‘amenity’:True,
‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, any lan-
duse=retail, any landuse=commercial, and any highway=bus_stop.

Returns
gpd.GeoDataFrame – gdf

Return type
gpd.GeoDataFrame

osmnx.features.features_from_xml(filepath, *, polygon=None, tags=None, encoding='utf-8')
Create a GeoDataFrame of OSM features from data in an OSM XML file.

Because this function creates a GeoDataFrame of features from an OSM XML file that has already been down-
loaded (i.e., no query is made to the Overpass API), the polygon and tags arguments are optional. If they are
None, filtering will be skipped.

Parameters

• filepath (str | Path) – Path to file containing OSM XML data.

• tags (dict[str, bool | str | list[str]] | None) – Query tags to optionally filter the final Geo-
DataFrame.

• polygon (Polygon | MultiPolygon | None) – Spatial boundaries to optionally filter the final
GeoDataFrame.

• encoding (str) – The OSM XML file’s character encoding.

Returns
gpd.GeoDataFrame – gdf

Return type
gpd.GeoDataFrame

66 Chapter 6. Documentation

https://wiki.openstreetmap.org/wiki/Map_features
tag:value

OSMnx, Release 2.0.0-dev

6.4.7 osmnx.geocoder module

Geocode place names or addresses or retrieve OSM elements by place name or ID.

This module uses the Nominatim API’s “search” and “lookup” endpoints. For more details see https://wiki.
openstreetmap.org/wiki/Elements and https://nominatim.org/.

osmnx.geocoder._geocode_query_to_gdf(query, which_result, by_osmid)
Geocode a single place query to a GeoDataFrame.

Parameters

• query (str | dict[str, str]) – Query string or structured dict to geocode.

• which_result (int | None) – Which search result to return. If None, auto-select the first
(Multi)Polygon or raise an error if OSM doesn’t return one. To get the top match regardless
of geometry type, set which_result=1. Ignored if by_osmid=True.

• by_osmid (bool) – If True, treat query as an OSM ID lookup rather than text search.

Returns
gdf – GeoDataFrame with one row containing the geocoding result.

Return type
geopandas.GeoDataFrame

osmnx.geocoder._get_first_polygon(results)
Choose first result of geometry type (Multi)Polygon from list of results.

Parameters
results (list[dict[str, Any]]) – Results from the Nominatim API.

Returns
result – The chosen result.

Return type
dict[str, Any]

osmnx.geocoder.geocode(query)
Geocode place names or addresses to (lat, lon) with the Nominatim API.

This geocodes the query via the Nominatim “search” endpoint.

Parameters
query (str) – The query string to geocode.

Returns
point – The (lat, lon) coordinates returned by the geocoder.

Return type
tuple[float, float]

osmnx.geocoder.geocode_to_gdf(query, *, which_result=None, by_osmid=False)
Retrieve OSM elements by place name or OSM ID with the Nominatim API.

If searching by place name, the query argument can be a string or structured dict, or a list of such strings/dicts to
send to the geocoder. This uses the Nominatim “search” endpoint to geocode the place name to the best-matching
OSM element, then returns that element and its attribute data.

You can instead query by OSM ID by passing by_osmid=True. This uses the Nominatim “lookup” endpoint to
retrieve the OSM element with that ID. In this case, the function treats the query argument as an OSM ID (or list
of OSM IDs), which must be prepended with their types: node (N), way (W), or relation (R) in accordance with
the Nominatim API format. For example, query=[“R2192363”, “N240109189”, “W427818536”].

6.4. Internals Reference 67

https://wiki.openstreetmap.org/wiki/Elements
https://wiki.openstreetmap.org/wiki/Elements
https://nominatim.org/

OSMnx, Release 2.0.0-dev

If query is a list, then which_result must be either an int or a list with the same length as query. The queries you
provide must be resolvable to elements in the Nominatim database. The resulting GeoDataFrame’s geometry
column contains place boundaries if they exist.

Parameters

• query (str | dict[str, str] | list[str | dict[str, str]]) – The query string(s) or struc-
tured dict(s) to geocode.

• which_result (int | None | list[int | None]) – Which search result to return. If None,
auto-select the first (Multi)Polygon or raise an error if OSM doesn’t return one. To get the
top match regardless of geometry type, set which_result=1. Ignored if by_osmid=True.

• by_osmid (bool) – If True, treat query as an OSM ID lookup rather than text search.

Returns
gdf – GeoDataFrame with one row for each query result.

Return type
geopandas.GeoDataFrame

6.4.8 osmnx.graph module

Download and create graphs from OpenStreetMap data.

Refer to the Getting Started guide for usage limitations.

osmnx.graph._add_paths(G, paths, bidirectional)
Add OSM paths to the graph as edges.

Parameters

• G (MultiDiGraph) – The graph to add paths to.

• paths (Iterable[dict[str, Any]]) – Iterable of paths’ tag:value attribute data dicts.

• bidirectional (bool) – If True, create bidirectional edges for one-way streets.

Returns
None – None

Return type
None

osmnx.graph._convert_node(element)
Convert an OSM node element into the format for a NetworkX node.

Parameters
element (dict[str, Any]) – OSM element of type “node”.

Returns
dict[str, Any] – node

Return type
dict[str, Any]

osmnx.graph._convert_path(element)
Convert an OSM way element into the format for a NetworkX path.

Parameters
element (dict[str, Any]) – OSM element of type “way”.

68 Chapter 6. Documentation

OSMnx, Release 2.0.0-dev

Returns
dict[str, Any] – path

Return type
dict[str, Any]

osmnx.graph._create_graph(response_jsons, bidirectional)
Create a NetworkX MultiDiGraph from Overpass API responses.

Adds length attributes in meters (great-circle distance between endpoints) to all of the graph’s (pre-simplified,
straight-line) edges via the distance.add_edge_lengths function.

Parameters

• response_jsons (Iterable[dict[str, Any]]) – Iterable of JSON responses from the
Overpass API.

• retain_all – If True, return the entire graph even if it is not connected. Otherwise, retain
only the largest weakly connected component.

• bidirectional (bool) – If True, create bidirectional edges for one-way streets.

Returns
MultiDiGraph – G

Return type
networkx.MultiDiGraph

osmnx.graph._is_path_one_way(attrs, bidirectional, oneway_values)
Determine if a path of nodes allows travel in only one direction.

Parameters

• attrs (dict[str, Any]) – A path’s tag:value attribute data.

• bidirectional (bool) – Whether this is a bidirectional network type.

• oneway_values (set[str]) – The values OSM uses in its “oneway” tag to denote True.

Returns
bool – is_one_way

Return type
bool

osmnx.graph._is_path_reversed(attrs, reversed_values)
Determine if the order of nodes in a path should be reversed.

Parameters

• attrs (dict[str, Any]) – A path’s tag:value attribute data.

• reversed_values (set[str]) – The values OSM uses in its ‘oneway’ tag to denote travel
can only occur in the opposite direction of the node order.

Returns
bool – is_reversed

Return type
bool

osmnx.graph._parse_nodes_paths(response_json)
Construct dicts of nodes and paths from an Overpass response.

6.4. Internals Reference 69

OSMnx, Release 2.0.0-dev

Parameters
response_json (dict[str, Any]) – JSON response from the Overpass API.

Returns
nodes, paths – Each dict’s keys are OSM IDs and values are dicts of attributes.

Return type
tuple[dict[int, dict[str, Any]], dict[int, dict[str, Any]]]

osmnx.graph.graph_from_address(address, dist, *, dist_type='bbox', network_type='all', simplify=True,
retain_all=False, truncate_by_edge=False, custom_filter=None)

Download and create a graph within some distance of an address.

This function uses filters to query the Overpass API: you can either specify a pre-defined network_type or provide
your own custom_filter with Overpass QL.

Use the settings module’s useful_tags_node and useful_tags_way settings to configure which OSM node/way
tags are added as graph node/edge attributes. You can also use the settings module to retrieve a snapshot of
historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and
other custom settings.

Parameters

• address (str) – The address to geocode and use as the central point around which to construct
the graph.

• dist (float) – Retain only those nodes within this many meters of center_point, measuring
distance according to dist_type.

• dist_type (str) – {“network”, “bbox”} If “bbox”, retain only those nodes within a bounding
box of dist. If “network”, retain only those nodes within dist network distance from the
centermost node.

• network_type (str) – {“all”, “all_public”, “bike”, “drive”, “drive_service”, “walk”} What
type of street network to retrieve if custom_filter is None.

• simplify (bool) – If True, simplify graph topology with the simplify_graph function.

• retain_all (bool) – If True, return the entire graph even if it is not connected. If False,
retain only the largest weakly connected component.

• truncate_by_edge (bool) – If True, retain nodes outside bounding box if at least one of
node’s neighbors is within the bounding box.

• custom_filter (str | None) – A custom ways filter to be used instead of the network_type
presets, e.g. ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass in a net-
work_type that is in settings.bidirectional_network_types if you want the graph to be fully
bidirectional.

Returns
nx.MultiDiGraph | tuple[nx.MultiDiGraph, tuple[float, float]] – G or (G, (lat, lon))

Return type
nx.MultiDiGraph | tuple[nx.MultiDiGraph, tuple[float, float]]

70 Chapter 6. Documentation

OSMnx, Release 2.0.0-dev

Notes

Very large query areas use the utils_geo._consolidate_subdivide_geometry function to automatically make mul-
tiple requests: see that function’s documentation for caveats.

osmnx.graph.graph_from_bbox(bbox, *, network_type='all', simplify=True, retain_all=False,
truncate_by_edge=False, custom_filter=None)

Download and create a graph within a lat-lon bounding box.

This function uses filters to query the Overpass API: you can either specify a pre-defined network_type or provide
your own custom_filter with Overpass QL.

Use the settings module’s useful_tags_node and useful_tags_way settings to configure which OSM node/way
tags are added as graph node/edge attributes. You can also use the settings module to retrieve a snapshot of
historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and
other custom settings.

Parameters

• bbox (tuple[float, float, float, float]) – Bounding box as (north, south, east, west).
Coordinates should be in unprojected latitude-longitude degrees (EPSG:4326).

• network_type (str) – {“all”, “all_public”, “bike”, “drive”, “drive_service”, “walk”} What
type of street network to retrieve if custom_filter is None.

• simplify (bool) – If True, simplify graph topology via the simplify_graph function.

• retain_all (bool) – If True, return the entire graph even if it is not connected. If False,
retain only the largest weakly connected component.

• truncate_by_edge (bool) – If True, retain nodes outside bounding box if at least one of
node’s neighbors is within the bounding box.

• custom_filter (str | None) – A custom ways filter to be used instead of the network_type
presets, e.g. ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass in a net-
work_type that is in settings.bidirectional_network_types if you want the graph to be fully
bidirectional.

Returns
MultiDiGraph – G

Return type
networkx.MultiDiGraph

Notes

Very large query areas use the utils_geo._consolidate_subdivide_geometry function to automatically make mul-
tiple requests: see that function’s documentation for caveats.

osmnx.graph.graph_from_place(query, *, network_type='all', simplify=True, retain_all=False,
truncate_by_edge=False, which_result=None, custom_filter=None)

Download and create a graph within the boundaries of some place(s).

The query must be geocodable and OSM must have polygon boundaries for the geocode result. If OSM does
not have a polygon for this place, you can instead get its street network using the graph_from_address function,
which geocodes the place name to a point and gets the network within some distance of that point.

If OSM does have polygon boundaries for this place but you’re not finding it, try to vary the query string, pass
in a structured query dict, or vary the which_result argument to use a different geocode result. If you know the

6.4. Internals Reference 71

OSMnx, Release 2.0.0-dev

OSM ID of the place, you can retrieve its boundary polygon using the geocode_to_gdf function, then pass it to
the features_from_polygon function.

This function uses filters to query the Overpass API: you can either specify a pre-defined network_type or provide
your own custom_filter with Overpass QL.

Use the settings module’s useful_tags_node and useful_tags_way settings to configure which OSM node/way
tags are added as graph node/edge attributes. You can also use the settings module to retrieve a snapshot of
historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and
other custom settings.

Parameters

• query (str | dict[str, str] | list[str | dict[str, str]]) – The query or queries to
geocode to retrieve place boundary polygon(s).

• network_type (str) – {“all”, “all_public”, “bike”, “drive”, “drive_service”, “walk”} What
type of street network to retrieve if custom_filter is None.

• simplify (bool) – If True, simplify graph topology with the simplify_graph function.

• retain_all (bool) – If True, return the entire graph even if it is not connected. If False,
retain only the largest weakly connected component.

• truncate_by_edge (bool) – If True, retain nodes outside bounding box if at least one of
node’s neighbors is within the bounding box.

• which_result (int | None | list[int | None]) – which geocoding result to use. if None,
auto-select the first (Multi)Polygon or raise an error if OSM doesn’t return one.

• custom_filter (str | None) – A custom ways filter to be used instead of the network_type
presets, e.g. ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass in a net-
work_type that is in settings.bidirectional_network_types if you want the graph to be fully
bidirectional.

Returns
MultiDiGraph – G

Return type
networkx.MultiDiGraph

Notes

Very large query areas use the utils_geo._consolidate_subdivide_geometry function to automatically make mul-
tiple requests: see that function’s documentation for caveats.

osmnx.graph.graph_from_point(center_point, dist, *, dist_type='bbox', network_type='all', simplify=True,
retain_all=False, truncate_by_edge=False, custom_filter=None)

Download and create a graph within some distance of a lat-lon point.

This function uses filters to query the Overpass API: you can either specify a pre-defined network_type or provide
your own custom_filter with Overpass QL.

Use the settings module’s useful_tags_node and useful_tags_way settings to configure which OSM node/way
tags are added as graph node/edge attributes. You can also use the settings module to retrieve a snapshot of
historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and
other custom settings.

Parameters

72 Chapter 6. Documentation

OSMnx, Release 2.0.0-dev

• center_point (tuple[float, float]) – The (lat, lon) center point around which to
construct the graph. Coordinates should be in unprojected latitude-longitude degrees
(EPSG:4326).

• dist (float) – Retain only those nodes within this many meters of center_point, measuring
distance according to dist_type.

• dist_type (str) – {“bbox”, “network”} If “bbox”, retain only those nodes within a bound-
ing box of dist length/width. If “network”, retain only those nodes within dist network dis-
tance of the nearest node to center_point.

• network_type (str) – {“all”, “all_public”, “bike”, “drive”, “drive_service”, “walk”} What
type of street network to retrieve if custom_filter is None.

• simplify (bool) – If True, simplify graph topology with the simplify_graph function.

• retain_all (bool) – If True, return the entire graph even if it is not connected. If False,
retain only the largest weakly connected component.

• truncate_by_edge (bool) – If True, retain nodes outside bounding box if at least one of
node’s neighbors is within the bounding box.

• custom_filter (str | None) – A custom ways filter to be used instead of the network_type
presets, e.g. ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass in a net-
work_type that is in settings.bidirectional_network_types if you want the graph to be fully
bidirectional.

Returns
MultiDiGraph – G

Return type
networkx.MultiDiGraph

Notes

Very large query areas use the utils_geo._consolidate_subdivide_geometry function to automatically make mul-
tiple requests: see that function’s documentation for caveats.

osmnx.graph.graph_from_polygon(polygon, *, network_type='all', simplify=True, retain_all=False,
truncate_by_edge=False, custom_filter=None)

Download and create a graph within the boundaries of a (Multi)Polygon.

This function uses filters to query the Overpass API: you can either specify a pre-defined network_type or provide
your own custom_filter with Overpass QL.

Use the settings module’s useful_tags_node and useful_tags_way settings to configure which OSM node/way
tags are added as graph node/edge attributes. You can also use the settings module to retrieve a snapshot of
historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and
other custom settings.

Parameters

• polygon (Polygon | MultiPolygon) – The geometry within which to construct the graph.
Coordinates should be in unprojected latitude-longitude degrees (EPSG:4326).

• network_type (str) – {“all”, “all_public”, “bike”, “drive”, “drive_service”, “walk”} What
type of street network to retrieve if custom_filter is None.

• simplify (bool) – If True, simplify graph topology with the simplify_graph function.

6.4. Internals Reference 73

OSMnx, Release 2.0.0-dev

• retain_all (bool) – If True, return the entire graph even if it is not connected. If False,
retain only the largest weakly connected component.

• truncate_by_edge (bool) – If True, retain nodes outside bounding box if at least one of
node’s neighbors is within the bounding box.

• custom_filter (str | None) – A custom ways filter to be used instead of the network_type
presets, e.g. ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass in a net-
work_type that is in settings.bidirectional_network_types if you want the graph to be fully
bidirectional.

Returns
nx.MultiDiGraph – G

Return type
nx.MultiDiGraph

Notes

Very large query areas use the utils_geo._consolidate_subdivide_geometry function to automatically make mul-
tiple requests: see that function’s documentation for caveats.

osmnx.graph.graph_from_xml(filepath, *, bidirectional=False, simplify=True, retain_all=False,
encoding='utf-8')

Create a graph from data in an OSM XML file.

Do not load an XML file previously generated by OSMnx: this use case is not supported and may not behave as
expected. To save/load graphs to/from disk for later use in OSMnx, use the io.save_graphml and io.load_graphml
functions instead.

Use the settings module’s useful_tags_node and useful_tags_way settings to configure which OSM node/way
tags are added as graph node/edge attributes.

Parameters

• filepath (str | Path) – Path to file containing OSM XML data.

• bidirectional (bool) – If True, create bidirectional edges for one-way streets.

• simplify (bool) – If True, simplify graph topology with the simplify_graph function.

• retain_all (bool) – If True, return the entire graph even if it is not connected. If False,
retain only the largest weakly connected component.

• encoding (str) – The OSM XML file’s character encoding.

Returns
MultiDiGraph – G

Return type
networkx.MultiDiGraph

74 Chapter 6. Documentation

OSMnx, Release 2.0.0-dev

6.4.9 osmnx._http module

Handle HTTP requests to web APIs.

osmnx._http._config_dns(url)
Force socket.getaddrinfo to use IP address instead of hostname.

Resolves the URL’s domain to an IP address so that we use the same server for both 1) checking the necessary
pause duration and 2) sending the query itself even if there is round-robin redirecting among multiple server
machines on the server-side. Mutates the getaddrinfo function so it uses the same IP address everytime it finds
the hostname in the URL.

For example, the server overpass-api.de just redirects to one of the other servers (currently gall.openstreetmap.de
and lambert.openstreetmap.de). So if we check the status endpoint of overpass-api.de, we may see results for
server gall, but when we submit the query itself it gets redirected to server lambert. This could result in violating
server lambert’s slot management timing.

Parameters
url (str) – The URL to consistently resolve the IP address of.

Returns
None – None

Return type
None

osmnx._http._get_http_headers(*, user_agent=None, referer=None, accept_language=None)
Update the default requests HTTP headers with OSMnx information.

Parameters

• user_agent (str | None) – The user agent. If None, use settings.http_user_agent value.

• referer (str | None) – The referer. If None, use settings.http_referer value.

• accept_language (str | None) – The accept language. If None, use set-
tings.http_accept_language value.

Returns
dict[str, str] – headers

Return type
dict[str, str]

osmnx._http._hostname_from_url(url)
Extract the hostname (domain) from a URL.

Parameters
url (str) – The url from which to extract the hostname.

Returns
hostname – The extracted hostname (domain).

Return type
str

osmnx._http._parse_response(response)
Parse JSON from a requests response and log the details.

Parameters
response (Response) – The response object.

6.4. Internals Reference 75

OSMnx, Release 2.0.0-dev

Returns
response_json – Value will be a dict if the response is from the Google or Overpass APIs, and a
list if the response is from the Nominatim API.

Return type
dict[str, Any] | list[dict[str, Any]]

osmnx._http._resolve_host_via_doh(hostname)
Resolve hostname to IP address via Google’s public DNS-over-HTTPS API.

Necessary fallback as socket.gethostbyname will not always work when using a proxy. See https://developers.
google.com/speed/public-dns/docs/doh/json If the user has set settings.doh_url_template=None or if resolution
fails (e.g., due to local network blocking DNS-over-HTTPS) the hostname itself will be returned instead. Note
that this means that server slot management may be violated: see _config_dns documentation for details.

Parameters
hostname (str) – The hostname to consistently resolve the IP address of.

Returns
ip_address – Resolved IP address of host, or hostname itself if resolution failed.

Return type
str

osmnx._http._retrieve_from_cache(url)
Retrieve a HTTP response JSON object from the cache if it exists.

Returns None if there is a server remark in the cached response.

Parameters
url (str) – The URL of the request.

Returns
response_json – Cached response for url if it exists in the cache and does not contain a server
remark, otherwise None.

Return type
dict[str, Any] | list[dict[str, Any]] | None

osmnx._http._save_to_cache(url, response_json, ok)
Save a HTTP response JSON object to a file in the cache folder.

This calculates the checksum of url to generate the cache file name. If the request was sent to server via POST
instead of GET, then url should be a GET-style representation of the request. Response is only saved to a cache
file if settings.use_cache is True, response_json is not None, and ok is True.

Users should always pass OrderedDicts instead of dicts of parameters into request functions, so the parameters
remain in the same order each time, producing the same URL string, and thus the same hash. Otherwise the cache
will eventually contain multiple saved responses for the same request because the URL’s parameters appeared in
a different order each time.

Parameters

• url (str) – The URL of the request.

• response_json (dict[str, Any] | list[dict[str, Any]]) – The JSON response from the
server.

• ok (bool) – A requests.response.ok value.

Returns
None – None

76 Chapter 6. Documentation

https://developers.google.com/speed/public-dns/docs/doh/json
https://developers.google.com/speed/public-dns/docs/doh/json

OSMnx, Release 2.0.0-dev

Return type
None

osmnx._http._url_in_cache(url)
Determine if a URL’s response exists in the cache.

Calculates the checksum of url to determine the cache file’s name. Returns None if it cannot be found in the
cache.

Parameters
url (str) – The URL to look for in the cache.

Returns
cache_filepath – Path to cached response for url if it exists, otherwise None.

Return type
Path | None

6.4.10 osmnx.io module

File I/O functions to save/load graphs to/from files on disk.

osmnx.io._convert_bool_string(value)
Convert a “True” or “False” string literal to corresponding boolean type.

This is necessary because Python will otherwise parse the string “False” to the boolean value True, that is,
bool(“False”) == True. This function raises a ValueError if a value other than “True” or “False” is passed.

If the value is already a boolean, this function just returns it, to accommodate usage when the value was originally
inside a stringified list.

Parameters
value (bool | str) – The string value to convert to bool.

Returns
bool – bool_value

Return type
bool

osmnx.io._convert_edge_attr_types(G, dtypes)
Convert graph edges’ attributes using a dict of data types.

Parameters

• G (MultiDiGraph) – Graph to convert the edge attributes of.

• dtypes (dict[str, Any]) – Dict of edge attribute names:types.

Returns
MultiDiGraph – G

Return type
networkx.MultiDiGraph

osmnx.io._convert_graph_attr_types(G, dtypes)
Convert graph-level attributes using a dict of data types.

Parameters

• G (MultiDiGraph) – Graph to convert the graph-level attributes of.

• dtypes (dict[str, Any]) – Dict of graph-level attribute names:types.

6.4. Internals Reference 77

OSMnx, Release 2.0.0-dev

Returns
MultiDiGraph – G

Return type
networkx.MultiDiGraph

osmnx.io._convert_node_attr_types(G, dtypes)
Convert graph nodes’ attributes using a dict of data types.

Parameters

• G (MultiDiGraph) – Graph to convert the node attributes of.

• dtypes (dict[str, Any]) – Dict of node attribute names:types.

Returns
MultiDiGraph – G

Return type
networkx.MultiDiGraph

osmnx.io._stringify_nonnumeric_cols(gdf)
Make every non-numeric GeoDataFrame column (besides geometry) a string.

This allows proper serializing via Fiona of GeoDataFrames with mixed types such as strings and ints in the same
column.

Parameters
gdf (GeoDataFrame) – GeoDataFrame to stringify non-numeric columns of.

Returns
gdf – GeoDataFrame with non-numeric columns stringified.

Return type
geopandas.GeoDataFrame

osmnx.io.load_graphml(filepath=None, *, graphml_str=None, node_dtypes=None, edge_dtypes=None,
graph_dtypes=None)

Load an OSMnx-saved GraphML file from disk or GraphML string.

This function converts node, edge, and graph-level attributes (serialized as strings) to their appropriate data
types. These can be customized as needed by passing in dtypes arguments providing types or custom con-
verter functions. For example, if you want to convert some attribute’s values to bool, consider using the built-in
ox.io._convert_bool_string function to properly handle “True”/”False” string literals as True/False booleans:
ox.load_graphml(fp, node_dtypes={my_attr: ox.io._convert_bool_string}).

If you manually configured the all_oneway=True setting, you may need to manually specify here that edge
oneway attributes should be type str.

Note that you must pass one and only one of filepath or graphml_str. If passing graphml_str, you may need to
decode the bytes read from your file before converting to string to pass to this function.

Parameters

• filepath (str | Path | None) – Path to the GraphML file.

• graphml_str (str | None) – Valid and decoded string representation of a GraphML file’s
contents.

• node_dtypes (dict[str, Any] | None) – Dict of node attribute names:types to convert val-
ues’ data types. The type can be a type or a custom string converter function.

• edge_dtypes (dict[str, Any] | None) – Dict of edge attribute names:types to convert val-
ues’ data types. The type can be a type or a custom string converter function.

78 Chapter 6. Documentation

OSMnx, Release 2.0.0-dev

• graph_dtypes (dict[str, Any] | None) – Dict of graph-level attribute names:types to con-
vert values’ data types. The type can be a type or a custom string converter function.

Returns
MultiDiGraph – G

Return type
networkx.MultiDiGraph

osmnx.io.save_graph_geopackage(G, filepath=None, *, directed=False, encoding='utf-8')
Save graph nodes and edges to disk as layers in a GeoPackage file.

Parameters

• G (MultiDiGraph) – The graph to save.

• filepath (str | Path | None) – Path to the GeoPackage file including extension. If None,
use default settings.data_folder/graph.gpkg.

• directed (bool) – If False, save one edge for each undirected edge in the graph but retain
original oneway and to/from information as edge attributes. If True, save one edge for each
directed edge in the graph.

• encoding (str) – The character encoding of the saved GeoPackage file.

Returns
None – None

Return type
None

osmnx.io.save_graph_xml(G, filepath=None, *, way_tag_aggs=None, encoding='utf-8')
Save graph to disk as an OSM XML file.

This function exists only to allow serialization to the OSM XML format for applications that require it, and has
constraints to conform to that. As such, it has a limited use case which does not include saving/loading graphs for
subsequent OSMnx analysis. To save/load graphs to/from disk for later use in OSMnx, use the io.save_graphml
and io.load_graphml functions instead. To load a graph from an OSM XML file that you have downloaded or
generated elsewhere, use the graph.graph_from_xml function.

Use the settings module’s useful_tags_node and useful_tags_way settings to configure which tags your graph is
created and saved with. This function merges graph edges such that each OSM way has one entry in the XML
output, with the way’s nodes topologically sorted. G must be unsimplified to save as OSM XML: otherwise, one
edge could comprise multiple OSM ways, making it impossible to group and sort edges in way. G should also
have been created with ox.settings.all_oneway=True for this function to behave properly.

Parameters

• G (MultiDiGraph) – Unsimplified, unprojected graph to save as an OSM XML file.

• filepath (str | Path | None) – Path to the saved file including extension. If None, use
default settings.data_folder/graph.osm.

• way_tag_aggs (dict[str, Any] | None) – Keys are OSM way tag keys and values are aggre-
gation functions (anything accepted as an argument by pandas.agg). Allows user to aggregate
graph edge attribute values into single OSM way values. If None, or if some tag’s key does
not exist in the dict, the way attribute will be assigned the value of the first edge of the way.

• encoding (str) – The character encoding of the saved OSM XML file.

Returns
None – None

6.4. Internals Reference 79

OSMnx, Release 2.0.0-dev

Return type
None

osmnx.io.save_graphml(G, filepath=None, *, gephi=False, encoding='utf-8')
Save graph to disk as GraphML file.

Parameters

• G (MultiDiGraph) – The graph to save as.

• filepath (str | Path | None) – Path to the GraphML file including extension. If None, use
default settings.data_folder/graph.graphml.

• gephi (bool) – If True, give each edge a unique key/id for compatibility with Gephi’s inter-
pretation of the GraphML specification.

• encoding (str) – The character encoding of the saved GraphML file.

Returns
None – None

Return type
None

6.4.11 osmnx._nominatim module

Tools to work with the Nominatim API.

osmnx._nominatim._download_nominatim_element(query, *, by_osmid=False, limit=1,
polygon_geojson=True)

Retrieve an OSM element from the Nominatim API.

Parameters

• query (str | dict[str, str]) – Query string or structured query dict.

• by_osmid (bool) – If True, treat query as an OSM ID lookup rather than text search.

• limit (int) – Max number of results to return.

• polygon_geojson (bool) – Whether to retrieve the place’s geometry from the API.

Returns
list[dict[str, Any]] – response_json

Return type
list[dict[str, Any]]

osmnx._nominatim._nominatim_request(params, *, request_type='search', pause=1, error_pause=60)
Send a HTTP GET request to the Nominatim API and return response.

Parameters

• params (OrderedDict[str, int | str]) – Key-value pairs of parameters.

• request_type (str) – {“search”, “reverse”, “lookup”} Which Nominatim API endpoint to
query.

• pause (float) – How long to pause before request, in seconds. Per the Nominatim usage
policy: “an absolute maximum of 1 request per second” is allowed.

• error_pause (float) – How long to pause in seconds before re-trying request if error.

80 Chapter 6. Documentation

OSMnx, Release 2.0.0-dev

Returns
list[dict[str, Any]] – response_json

Return type
list[dict[str, Any]]

6.4.12 osmnx._osm_xml module

Read/write OSM XML files.

For file format information see https://wiki.openstreetmap.org/wiki/OSM_XML

class osmnx._osm_xml._OSMContentHandler

SAX content handler for OSM XML.

Builds an Overpass-like response JSON object in self.object. For format notes, see https://wiki.openstreetmap.
org/wiki/OSM_XML and https://overpass-api.de

endElement(name)
Signals the end of an element in non-namespace mode.

The name parameter contains the name of the element type, just as with the startElement event.

Return type
None

Parameters
name (str)

startElement(name, attrs)
Signals the start of an element in non-namespace mode.

The name parameter contains the raw XML 1.0 name of the element type as a string and the attrs parameter
holds an instance of the Attributes class containing the attributes of the element.

Return type
None

Parameters

• name (str)

• attrs (AttributesImpl)

osmnx._osm_xml._add_nodes_xml(parent, gdf_nodes)
Add graph nodes as subelements of an XML parent element.

Parameters

• parent (Element) – The XML parent element.

• gdf_nodes (GeoDataFrame) – A GeoDataFrame of graph nodes.

Returns
None – None

Return type
None

6.4. Internals Reference 81

https://wiki.openstreetmap.org/wiki/OSM_XML
https://wiki.openstreetmap.org/wiki/OSM_XML
https://wiki.openstreetmap.org/wiki/OSM_XML
https://overpass-api.de

OSMnx, Release 2.0.0-dev

osmnx._osm_xml._add_ways_xml(parent, gdf_edges, way_tag_aggs)
Add graph edges (grouped as ways) as subelements of an XML parent element.

Parameters

• parent (Element) – The XML parent element.

• gdf_edges (GeoDataFrame) – A GeoDataFrame of graph edges with OSM way “id” col-
umn for grouping edges into ways.

• way_tag_aggs (dict[str, Any] | None) – Keys are OSM way tag keys and values are ag-
gregation functions (anything accepted as an argument by pandas.agg). Allows user to ag-
gregate graph edge attribute values into single OSM way values. If None, or if some tag’s
key does not exist in the dict, the way attribute will be assigned the value of the first edge of
the way.

Returns
None – None

Return type
None

osmnx._osm_xml._overpass_json_from_xml(filepath, encoding)
Read OSM XML data from file and return Overpass-like JSON.

Parameters

• filepath (str | Path) – Path to file containing OSM XML data.

• encoding (str) – The XML file’s character encoding.

Returns
response_json – A parsed JSON response from the Overpass API.

Return type
dict[str, Any]

osmnx._osm_xml._save_graph_xml(G, filepath, way_tag_aggs, encoding='utf-8')
Save graph to disk as an OSM XML file.

Parameters

• G (MultiDiGraph) – Unsimplified, unprojected graph to save as an OSM XML file.

• filepath (str | Path | None) – Path to the saved file including extension. If None, use
default settings.data_folder/graph.osm.

• way_tag_aggs (dict[str, Any] | None) – Keys are OSM way tag keys and values are ag-
gregation functions (anything accepted as an argument by pandas.agg). Allows user to ag-
gregate graph edge attribute values into single OSM way values. If None, or if some tag’s
key does not exist in the dict, the way attribute will be assigned the value of the first edge of
the way.

• encoding (str) – The character encoding of the saved OSM XML file.

Returns
None – None

Return type
None

osmnx._osm_xml._sort_nodes(G, osmid)
Topologically sort the nodes of an OSM way.

82 Chapter 6. Documentation

OSMnx, Release 2.0.0-dev

Parameters

• G (MultiDiGraph) – The graph representing the OSM way.

• osmid (int) – The OSM way ID.

Returns
ordered_nodes – The way’s node IDs in topologically sorted order.

Return type
list[int]

6.4.13 osmnx._overpass module

Tools to work with the Overpass API.

osmnx._overpass._create_overpass_features_query(polygon_coord_str, tags)
Create an Overpass features query string based on tags.

Parameters

• polygon_coord_str (str) – The lat lon coordinates.

• tags (dict[str, bool | str | list[str]]) – Tags used for finding elements in the search
area.

Returns
str – query

Return type
str

osmnx._overpass._download_overpass_features(polygon, tags)
Retrieve OSM features within some boundary polygon from the Overpass API.

Parameters

• polygon (Polygon) – Boundary to retrieve elements within.

• tags (dict[str, bool | str | list[str]]) – Tags used for finding elements in the selected
area.

Yields
response_json – JSON response from the Overpass server.

Return type
Iterator[dict[str, Any]]

osmnx._overpass._download_overpass_network(polygon, network_type, custom_filter)
Retrieve networked ways and nodes within boundary from the Overpass API.

Parameters

• polygon (Polygon | MultiPolygon) – The boundary to fetch the network ways/nodes within.

• network_type (str) – What type of street network to get if custom_filter is None.

• custom_filter (str | None) – A custom “ways” filter to be used instead of network_type
presets.

Yields
response_json – JSON response from the Overpass server.

6.4. Internals Reference 83

OSMnx, Release 2.0.0-dev

Return type
Iterator[dict[str, Any]]

osmnx._overpass._get_network_filter(network_type)
Create a filter to query Overpass for the specified network type.

The filter queries Overpass for every OSM way with a “highway” tag but excludes ways that are incompatible
with the requested network type. You can choose from the following types:

“all” retrieves all public and private-access ways currently in use.

“all_public” retrieves all public ways currently in use.

“bike” retrieves public bikeable ways and excludes foot ways, motor ways, and anything tagged biking=no.

“drive” retrieves public drivable streets and excludes service roads, anything tagged motor=no, and certain non-
service roads tagged as providing certain services (such as alleys or driveways).

“drive_service” retrieves public drivable streets including service roads but excludes certain services (such as
parking or emergency access).

“walk” retrieves public walkable ways and excludes cycle ways, motor ways, and anything tagged foot=no. It
includes service roads like parking lot aisles and alleys that you can walk on even if they are unpleasant walks.

Parameters
network_type (str) – {“all”, “all_public”, “bike”, “drive”, “drive_service”, “walk”} What
type of street network to retrieve.

Returns
way_filter – The Overpass query filter.

Return type
str

osmnx._overpass._get_overpass_pause(base_endpoint, *, recursive_delay=5, default_duration=60)
Retrieve a pause duration from the Overpass API status endpoint.

Check the Overpass API status endpoint to determine how long to wait until the next slot is available. You can
disable this via the settings module’s overpass_rate_limit setting.

Parameters

• base_endpoint (str) – Base Overpass API URL (without “/status” at the end).

• recursive_delay (float) – How long to wait between recursive calls if the server is cur-
rently running a query.

• default_duration (float) – If a fatal error occurs, fall back on returning this value.

Returns
pause – The current pause duration specified by the Overpass status endpoint.

Return type
float

osmnx._overpass._make_overpass_polygon_coord_strs(polygon)
Subdivide query polygon and return list of coordinate strings.

Project to UTM, divide polygon up into sub-polygons if area exceeds a max size (in meters), project back to
lat-lon, then get a list of polygon(s) exterior coordinates. Ignore interior (“holes”) coordinates.

Parameters
polygon (Polygon | MultiPolygon) – The (Multi)Polygon to convert to exterior coordinate strings.

84 Chapter 6. Documentation

OSMnx, Release 2.0.0-dev

Returns
coord_strs – Exterior coordinates of polygon(s).

Return type
list[str]

osmnx._overpass._make_overpass_settings()

Make settings string to send in Overpass query.

Returns
overpass_settings – The settings.overpass_settings string formatted with “timeout” and “max-
size” values.

Return type
str

osmnx._overpass._overpass_request(data, *, pause=None, error_pause=60)
Send a HTTP POST request to the Overpass API and return response.

Parameters

• data (OrderedDict[str, Any]) – Key-value pairs of parameters.

• pause (float | None) – How long to pause in seconds before request. If None, will query
API status endpoint to find when next slot is available.

• error_pause (float) – How long to pause in seconds (in addition to pause) before re-trying
request if error.

Returns
dict[str, Any] – response_json

Return type
dict[str, Any]

6.4.14 osmnx.plot module

Visualize street networks, routes, orientations, and geospatial features.

osmnx.plot._config_ax(ax, crs, bbox, padding)
Configure a matplotlib axes instance for display.

Parameters

• ax (Axes) – The axes instance.

• crs (Any) – The coordinate reference system of the plotted geometries.

• bbox (tuple[float, float, float, float]) – Bounding box as (north, south, east, west).

• padding (float) – Relative padding to add around bbox.

Returns
Axes – ax

Return type
matplotlib.axes._axes.Axes

osmnx.plot._get_colors_by_value(vals, num_bins, cmap, start, stop, na_color, equal_size)
Map colors to the values in a Series of node/edge attribute values.

Parameters

6.4. Internals Reference 85

OSMnx, Release 2.0.0-dev

• vals (Series) – Series labels are node/edge IDs and values are attribute values.

• num_bins (int | None) – If None, linearly map a color to each value. Otherwise, assign
values to this many bins then assign a color to each bin.

• cmap (str) – Name of the matplotlib colormap from which to choose the colors.

• start (float) – Where to start in the colorspace (from 0 to 1).

• stop (float) – Where to end in the colorspace (from 0 to 1).

• na_color (str) – The color to assign to nodes with missing attr values.

• equal_size (bool) – Ignored if num_bins is None. If True, bin into equal-sized quantiles
(requires unique bin edges). If False, bin into equal-spaced bins.

Returns
color_series – Labels are node/edge IDs, values are colors as hex strings.

Return type
pandas.Series

osmnx.plot._get_fig_ax(ax, figsize, bgcolor, polar)
Generate a matplotlib Figure and (Polar)Axes or return existing ones.

Parameters

• ax (Axes | None) – If not None, plot on this pre-existing axes instance.

• figsize (tuple[float, float]) – If ax is None, create new figure with size (width, height).

• bgcolor (str | None) – Background color of figure.

• polar (bool) – If True, generate a PolarAxes instead of an Axes instance.

Returns
tuple[Figure, Axes | PolarAxes] – fig, ax

Return type
tuple[Figure, Axes | PolarAxes]

osmnx.plot._save_and_show(fig, ax, *, show=True, close=True, save=False, filepath=None, dpi=300)
Save a figure to disk and/or show it, as specified by arguments.

Parameters

• fig (Figure) – The figure.

• ax (Axes) – The axes instance.

• show (bool) – If True, call pyplot.show() to show the figure.

• close (bool) – If True, call pyplot.close() to close the figure.

• save (bool) – If True, save the figure to disk at filepath.

• filepath (str | Path | None) – The path to the file if save is True. File format is determined
from the extension. If None, save at settings.imgs_folder/image.png.

• dpi (int) – The resolution of saved file if save is True.

Returns
tuple[Figure, Axes] – fig, ax

Return type
tuple[matplotlib.figure.Figure, matplotlib.axes._axes.Axes]

86 Chapter 6. Documentation

OSMnx, Release 2.0.0-dev

osmnx.plot._verify_mpl()

Verify that matplotlib is installed and imported.

Returns
None – None

Return type
None

osmnx.plot.get_colors(n, *, cmap='viridis', start=0, stop=1, alpha=None)
Return n evenly-spaced colors from a matplotlib colormap.

Parameters

• n (int) – How many colors to generate.

• cmap (str) – Name of the matplotlib colormap from which to choose the colors.

• start (float) – Where to start in the colorspace (from 0 to 1).

• stop (float) – Where to end in the colorspace (from 0 to 1).

• alpha (float | None) – If None, return colors as HTML-like hex triplet “#rrggbb” RGB
strings. If float, return as “#rrggbbaa” RGBa strings.

Returns
list[str] – color_list

Return type
list[str]

osmnx.plot.get_edge_colors_by_attr(G, attr, *, num_bins=None, cmap='viridis', start=0, stop=1,
na_color='none', equal_size=False)

Return colors based on edges’ numerical attribute values.

Parameters

• G (MultiDiGraph) – Input graph.

• attr (str) – Name of a node attribute with numerical values.

• num_bins (int | None) – If None, linearly map a color to each value. Otherwise, assign
values to this many bins then assign a color to each bin.

• cmap (str) – Name of the matplotlib colormap from which to choose the colors.

• start (float) – Where to start in the colorspace (from 0 to 1).

• stop (float) – Where to end in the colorspace (from 0 to 1).

• na_color (str) – The color to assign to nodes with missing attr values.

• equal_size (bool) – Ignored if num_bins is None. If True, bin into equal-sized quantiles
(requires unique bin edges). If False, bin into equal-spaced bins.

Returns
edge_colors – Labels are (u, v, k) edge IDs, values are colors as hex strings.

Return type
pandas.Series

osmnx.plot.get_node_colors_by_attr(G, attr, *, num_bins=None, cmap='viridis', start=0, stop=1,
na_color='none', equal_size=False)

Return colors based on nodes’ numerical attribute values.

6.4. Internals Reference 87

OSMnx, Release 2.0.0-dev

Parameters

• G (MultiDiGraph) – Input graph.

• attr (str) – Name of a node attribute with numerical values.

• num_bins (int | None) – If None, linearly map a color to each value. Otherwise, assign
values to this many bins then assign a color to each bin.

• cmap (str) – Name of the matplotlib colormap from which to choose the colors.

• start (float) – Where to start in the colorspace (from 0 to 1).

• stop (float) – Where to end in the colorspace (from 0 to 1).

• na_color (str) – The color to assign to nodes with missing attr values.

• equal_size (bool) – Ignored if num_bins is None. If True, bin into equal-sized quantiles
(requires unique bin edges). If False, bin into equal-spaced bins.

Returns
node_colors – Labels are node IDs, values are colors as hex strings.

Return type
pandas.Series

osmnx.plot.plot_figure_ground(G, *, dist=805, street_widths=None, default_width=4, color='w',
**pg_kwargs)

Plot a figure-ground diagram of a street network.

Parameters

• G (MultiDiGraph) – An unprojected graph.

• dist (float) – How many meters to extend plot’s bounding box north, south, east, and west
from the graph’s center point. Default corresponds to a square mile bounding box.

• street_widths (dict[str, float] | None) – Dict keys are street types (ie, OSM “highway”
tags) and values are the widths to plot them, in pixels.

• default_width (float) – Fallback width, in pixels, for any street type not in street_widths.

• color (str) – The color of the streets.

• pg_kwargs (Any) – Keyword arguments to pass to plot_graph.

Returns
tuple[Figure, Axes] – fig, ax

Return type
tuple[matplotlib.figure.Figure, matplotlib.axes._axes.Axes]

osmnx.plot.plot_footprints(gdf , *, ax=None, figsize=(8, 8), color='orange', edge_color='none',
edge_linewidth=0, alpha=None, bgcolor='#111111', bbox=None, show=True,
close=False, save=False, filepath=None, dpi=600)

Visualize a GeoDataFrame of geospatial features’ footprints.

Parameters

• gdf (gpd.GeoDataFrame) – GeoDataFrame of footprints (i.e., Polygons and/or MultiPoly-
gons).

• ax (Axes | None) – If not None, plot on this pre-existing axes instance.

• figsize (tuple[float, float]) – If ax is None, create new figure with size (width, height).

88 Chapter 6. Documentation

OSMnx, Release 2.0.0-dev

• color (str) – Color of the footprints.

• edge_color (str) – Color of the footprints’ edges.

• edge_linewidth (float) – Width of the footprints’ edges.

• alpha (float | None) – Opacity of the footprints’ edges.

• bgcolor (str) – Background color of the figure.

• bbox (tuple[float, float, float, float] | None) – Bounding box as (north, south, east, west). If
None, calculate it from the spatial extents of the geometries in gdf.

• show (bool) – If True, call pyplot.show() to show the figure.

• close (bool) – If True, call pyplot.close() to close the figure.

• save (bool) – If True, save the figure to disk at filepath.

• filepath (str | Path | None) – The path to the file if save is True. File format is determined
from the extension. If None, save at settings.imgs_folder/image.png.

• dpi (int) – The resolution of saved file if save is True.

Returns
tuple[Figure, Axes] – fig, ax

Return type
tuple[Figure, Axes]

osmnx.plot.plot_graph(G, *, ax=None, figsize=(8, 8), bgcolor='#111111', node_color='w', node_size=15,
node_alpha=None, node_edgecolor='none', node_zorder=1, edge_color='#999999',
edge_linewidth=1, edge_alpha=None, bbox=None, show=True, close=False,
save=False, filepath=None, dpi=300)

Visualize a graph.

Parameters

• G (nx.MultiGraph | nx.MultiDiGraph) – Input graph.

• ax (Axes | None) – If not None, plot on this pre-existing axes instance.

• figsize (tuple[float, float]) – If ax is None, create new figure with size (width, height).

• bgcolor (str) – Background color of the figure.

• node_color (str | Sequence[str]) – Color(s) of the nodes.

• node_size (float | Sequence[float]) – Size(s) of the nodes. If 0, then skip plotting the nodes.

• node_alpha (float | None) – Opacity of the nodes. If you passed RGBa values to node_color,
set node_alpha=None to use the alpha channel in node_color.

• node_edgecolor (str | Iterable[str]) – Color(s) of the nodes’ markers’ borders.

• node_zorder (int) – The zorder to plot nodes. Edges are always 1, so set node_zorder=0
to plot nodes beneath edges.

• edge_color (str | Iterable[str]) – Color(s) of the edges’ lines.

• edge_linewidth (float | Sequence[float]) – Width(s) of the edges’ lines. If 0, then skip
plotting the edges.

• edge_alpha (float | None) – Opacity of the edges. If you passed RGBa values to edge_color,
set edge_alpha=None to use the alpha channel in edge_color.

6.4. Internals Reference 89

OSMnx, Release 2.0.0-dev

• bbox (tuple[float, float, float, float] | None) – Bounding box as (north, south, east, west). If
None, calculate it from spatial extents of plotted geometries.

• show (bool) – If True, call pyplot.show() to show the figure.

• close (bool) – If True, call pyplot.close() to close the figure.

• save (bool) – If True, save the figure to disk at filepath.

• filepath (str | Path | None) – The path to the file if save is True. File format is determined
from the extension. If None, save at settings.imgs_folder/image.png.

• dpi (int) – The resolution of saved file if save is True.

Returns
tuple[Figure, Axes] – fig, ax

Return type
tuple[Figure, Axes]

osmnx.plot.plot_graph_route(G, route, *, route_color='r', route_linewidth=4, route_alpha=0.5,
orig_dest_size=100, ax=None, **pg_kwargs)

Visualize a path along a graph.

Parameters

• G (nx.MultiDiGraph) – Input graph.

• route (list[int]) – A path of node IDs.

• route_color (str) – The color of the route.

• route_linewidth (float) – Width of the route’s line.

• route_alpha (float) – Opacity of the route’s line.

• orig_dest_size (float) – Size of the origin and destination nodes.

• ax (Axes | None) – If not None, plot on this pre-existing axes instance.

• pg_kwargs (Any) – Keyword arguments to pass to plot_graph.

Returns
tuple[Figure, Axes] – fig, ax

Return type
tuple[Figure, Axes]

osmnx.plot.plot_graph_routes(G, routes, *, route_colors='r', route_linewidths=4, **pgr_kwargs)
Visualize multiple paths along a graph.

Parameters

• G (MultiDiGraph) – Input graph.

• routes (Iterable[list[int]]) – Paths of node IDs.

• route_colors (str | Iterable[str]) – If string, the one color for all routes. Otherwise,
the color for each route.

• route_linewidths (float | Iterable[float]) – If float, the one linewidth for all routes.
Otherwise, the linewidth for each route.

• pgr_kwargs (Any) – Keyword arguments to pass to plot_graph_route.

Returns
tuple[Figure, Axes] – fig, ax

90 Chapter 6. Documentation

OSMnx, Release 2.0.0-dev

Return type
tuple[matplotlib.figure.Figure, matplotlib.axes._axes.Axes]

osmnx.plot.plot_orientation(G, *, num_bins=36, min_length=0, weight=None, ax=None, figsize=(5, 5),
area=True, color='#003366', edgecolor='k', linewidth=0.5, alpha=0.7,
title=None, title_y=1.05, title_font=None, xtick_font=None)

Plot a polar histogram of a spatial network’s edge bearings.

Ignores self-loop edges as their bearings are undefined. If G is a MultiGraph, all edge bearings will be bidi-
rectional (ie, two reciprocal bearings per undirected edge). If G is a MultiDiGraph, all edge bearings will be
directional (ie, one bearing per directed edge). See also the bearings module.

For more info see: Boeing, G. 2019. “Urban Spatial Order: Street Network Orientation, Configuration, and
Entropy.” Applied Network Science, 4 (1), 67. https://doi.org/10.1007/s41109-019-0189-1

Parameters

• G (nx.MultiGraph | nx.MultiDiGraph) – Unprojected graph with bearing attributes on each
edge.

• num_bins (int) – Number of bins. For example, if num_bins=36 is provided, then each bin
will represent 10 degrees around the compass.

• min_length (float) – Ignore edges with “length” attribute values less than min_length.

• weight (str | None) – If not None, weight the edges’ bearings by this (non-null) edge attribute.

• ax (PolarAxes | None) – If not None, plot on this pre-existing axes instance (must have pro-
jection=polar).

• figsize (tuple[float, float]) – If ax is None, create new figure with size (width, height).

• area (bool) – If True, set bar length so area is proportional to frequency. Otherwise, set bar
length so height is proportional to frequency.

• color (str) – Color of the histogram bars.

• edgecolor (str) – Color of the histogram bar edges.

• linewidth (float) – Width of the histogram bar edges.

• alpha (float) – Opacity of the histogram bars.

• title (str | None) – The figure’s title.

• title_y (float) – The y position to place title.

• title_font (dict[str, Any] | None) – The title’s fontdict to pass to matplotlib.

• xtick_font (dict[str, Any] | None) – The xtick labels’ fontdict to pass to matplotlib.

Returns
tuple[Figure, PolarAxes] – fig, ax

Return type
tuple[Figure, PolarAxes]

6.4. Internals Reference 91

https://doi.org/10.1007/s41109-019-0189-1

OSMnx, Release 2.0.0-dev

6.4.15 osmnx.projection module

Project a graph, GeoDataFrame, or geometry to a different CRS.

osmnx.projection.is_projected(crs)
Determine if a coordinate reference system is projected or not.

Parameters
crs (Any) – The identifier of the coordinate reference system. This can be anything accepted by
pyproj.CRS.from_user_input(), such as an authority string or a WKT string.

Returns
projected – True if crs is projected, otherwise False

Return type
bool

osmnx.projection.project_gdf(gdf , *, to_crs=None, to_latlong=False)
Project a GeoDataFrame from its current CRS to another.

If to_latlong is True, this projects the GeoDataFrame to the coordinate reference system defined by set-
tings.default_crs. Otherwise it projects it to the CRS defined by to_crs. If to_crs is None, it projects it to the
CRS of an appropriate UTM zone given geometry’s bounds.

Parameters

• gdf (GeoDataFrame) – The GeoDataFrame to be projected.

• to_crs (Any | None) – If None, project to an appropriate UTM zone. Otherwise project to
this CRS.

• to_latlong (bool) – If True, project to settings.default_crs and ignore to_crs.

Returns
gdf_proj – The projected GeoDataFrame.

Return type
geopandas.GeoDataFrame

osmnx.projection.project_geometry(geometry, *, crs=None, to_crs=None, to_latlong=False)
Project a Shapely geometry from its current CRS to another.

If to_latlong is True, this projects the geometry to the coordinate reference system defined by settings.default_crs.
Otherwise it projects it to the CRS defined by to_crs. If to_crs is None, it projects it to the CRS of an appropriate
UTM zone given geometry’s bounds.

Parameters

• geometry (Geometry) – The geometry to be projected.

• crs (Any | None) – The initial CRS of geometry. If None, it will be set to settings.default_crs.

• to_crs (Any | None) – If None, project to an appropriate UTM zone. Otherwise project to
this CRS.

• to_latlong (bool) – If True, project to settings.default_crs and ignore to_crs.

Returns
geometry_proj, crs – The projected geometry and its new CRS.

Return type
tuple[shapely.Geometry, Any]

92 Chapter 6. Documentation

OSMnx, Release 2.0.0-dev

osmnx.projection.project_graph(G, *, to_crs=None, to_latlong=False)
Project a graph from its current CRS to another.

If to_latlong is True, this projects the graph to the coordinate reference system defined by settings.default_crs.
Otherwise it projects it to the CRS defined by to_crs. If to_crs is None, it projects it to the CRS of an appropriate
UTM zone given geometry’s bounds.

Parameters

• G (MultiDiGraph) – The graph to be projected.

• to_crs (Any | None) – If None, project to an appropriate UTM zone. Otherwise project to
this CRS.

• to_latlong (bool) – If True, project to settings.default_crs and ignore to_crs.

Returns
G_proj – The projected graph.

Return type
networkx.MultiDiGraph

6.4.16 osmnx.routing module

Calculate edge speeds, travel times, and weighted shortest paths.

osmnx.routing._clean_maxspeed(maxspeed, *, agg=numpy.mean, convert_mph=True)
Clean a maxspeed string and convert mph to kph if necessary.

If present, splits maxspeed on “|” (which denotes that the value contains different speeds per lane) then aggregates
the resulting values. If given string is not a valid numeric string, tries to look up its value in implicit maxspeed
values mapping. Invalid inputs return None. See https://wiki.openstreetmap.org/wiki/Key:maxspeed for details
on values and formats.

Parameters

• maxspeed (str | float) – An OSM way “maxspeed” attribute value. Null values are ex-
pected to be of type float (numpy.nan), and non-null values are strings.

• agg (Callable[[Any], Any]) – Aggregation function if maxspeed contains multiple values
(default is numpy.mean).

• convert_mph (bool) – If True, convert miles per hour to kilometers per hour.

Returns
clean_value – Clean value resulting from agg function.

Return type
float | None

osmnx.routing._collapse_multiple_maxspeed_values(value, agg)
Collapse a list of maxspeed values to a single value.

Returns None if a ValueError is encountered.

Parameters

• value (str | float | list[str | float]) – An OSM way “maxspeed” attribute value. Null
values are expected to be of type float (numpy.nan), and non-null values are strings.

• agg (Callable[[Any], Any]) – The aggregation function to reduce the list to a single value.

6.4. Internals Reference 93

https://wiki.openstreetmap.org/wiki/Key:maxspeed

OSMnx, Release 2.0.0-dev

Returns
collapsed – If value was a string or null, it is just returned directly. Otherwise, the return is a
float representation of the aggregated value in the list (converted to kph if original value was in
mph).

Return type
float | str | None

osmnx.routing._single_shortest_path(G, orig, dest, weight)
Solve the shortest path from an origin node to a destination node.

This function uses Dijkstra’s algorithm. It is a convenience wrapper around networkx.shortest_path, with excep-
tion handling for unsolvable paths. If the path is unsolvable, it returns None.

Parameters

• G (MultiDiGraph) – Input graph.

• orig (int) – Origin node ID.

• dest (int) – Destination node ID.

• weight (str) – Edge attribute to minimize when solving shortest path.

Returns
path – The node IDs constituting the shortest path.

Return type
list[int] | None

osmnx.routing._verify_edge_attribute(G, attr)
Verify attribute values are numeric and non-null across graph edges.

Raises a ValueError if this attribute contains non-numeric values, and issues a UserWarning if this attribute is
missing or null on any edges.

Parameters

• G (MultiDiGraph) – Input graph.

• attr (str) – Name of the edge attribute to verify.

Returns
None – None

Return type
None

osmnx.routing.add_edge_speeds(G, *, hwy_speeds=None, fallback=None, agg=numpy.mean)
Add edge speeds (km per hour) to graph as new speed_kph edge attributes.

By default, this imputes free-flow travel speeds for all edges via the mean maxspeed value of the edges of each
highway type. For highway types in the graph that have no maxspeed value on any edge, it assigns the mean of
all maxspeed values in graph.

This default mean-imputation can obviously be imprecise, and the user can override it by passing in hwy_speeds
and/or fallback arguments that correspond to local speed limit standards. The user can also specify a different
aggregation function (such as the median) to impute missing values from the observed values.

If edge maxspeed attribute has “mph” in it, value will automatically be converted from miles per hour to km
per hour. Any other speed units should be manually converted to km per hour prior to running this function,
otherwise there could be unexpected results. If “mph” does not appear in the edge’s maxspeed attribute string,
then function assumes kph, per OSM guidelines: https://wiki.openstreetmap.org/wiki/Map_Features/Units

94 Chapter 6. Documentation

https://wiki.openstreetmap.org/wiki/Map_Features/Units

OSMnx, Release 2.0.0-dev

Parameters

• G (MultiDiGraph) – Input graph.

• hwy_speeds (dict[str, float] | None) – Dict keys are OSM highway types and values are
typical speeds (km per hour) to assign to edges of that highway type for any edges missing
speed data. Any edges with highway type not in hwy_speeds will be assigned the mean
pre-existing speed value of all edges of that highway type.

• fallback (float | None) – Default speed value (km per hour) to assign to edges whose
highway type did not appear in hwy_speeds and had no pre-existing speed attribute values
on any edge.

• agg (Callable[[Any], Any]) – Aggregation function to impute missing values from ob-
served values. The default is numpy.mean, but you might also consider for example
numpy.median, numpy.nanmedian, or your own custom function.

Returns
G – Graph with speed_kph attributes on all edges.

Return type
networkx.MultiDiGraph

osmnx.routing.add_edge_travel_times(G)
Add edge travel time (seconds) to graph as new travel_time edge attributes.

Calculates free-flow travel time along each edge, based on length and speed_kph attributes. Note: run
add_edge_speeds first to generate the speed_kph attribute. All edges must have length and speed_kph attributes
and all their values must be non-null.

Parameters
G (MultiDiGraph) – Input graph.

Returns
G – Graph with travel_time attributes on all edges.

Return type
networkx.MultiDiGraph

osmnx.routing.k_shortest_paths(G, orig, dest, k, *, weight='length')
Solve k shortest paths from an origin node to a destination node.

Uses Yen’s algorithm. See also shortest_path to solve just the one shortest path.

Parameters

• G (MultiDiGraph) – Input graph.

• orig (int) – Origin node ID.

• dest (int) – Destination node ID.

• k (int) – Number of shortest paths to solve.

• weight (str) – Edge attribute to minimize when solving shortest paths.

Yields
path – The node IDs constituting the next-shortest path.

Return type
Iterator[list[int]]

6.4. Internals Reference 95

OSMnx, Release 2.0.0-dev

osmnx.routing.route_to_gdf(G, route, *, weight='length')
Return a GeoDataFrame of the edges in a path, in order.

Parameters

• G (MultiDiGraph) – Input graph.

• route (list[int]) – Node IDs constituting the path.

• weight (str) – Attribute value to minimize when choosing between parallel edges.

Returns
GeoDataFrame – gdf_edges

Return type
geopandas.GeoDataFrame

osmnx.routing.shortest_path(G, orig, dest, *, weight='length', cpus=1)
Solve shortest path from origin node(s) to destination node(s).

Uses Dijkstra’s algorithm. If orig and dest are single node IDs, this will return a list of the nodes constituting
the shortest path between them. If orig and dest are lists of node IDs, this will return a list of lists of the nodes
constituting the shortest path between each origin-destination pair. If a path cannot be solved, this will return
None for that path. You can parallelize solving multiple paths with the cpus parameter, but be careful to not
exceed your available RAM.

See also k_shortest_paths to solve multiple shortest paths between a single origin and destination. For additional
functionality or different solver algorithms, use NetworkX directly.

Parameters

• G (MultiDiGraph) – Input graph,

• orig (int | Iterable[int]) – Origin node ID(s).

• dest (int | Iterable[int]) – Destination node ID(s).

• weight (str) – Edge attribute to minimize when solving shortest path.

• cpus (int | None) – How many CPU cores to use. If None, use all available.

Returns
path – The node IDs constituting the shortest path, or, if orig and dest are both iterable, then a
list of such paths.

Return type
list[int] | None | list[list[int] | None]

6.4.17 osmnx.settings module

Global settings that can be configured by the user.

all_oneway
[bool] Only use if subsequently saving graph to an OSM XML file via the save_graph_xml function. If True,
forces all ways to be added as one-way ways, preserving the original order of the nodes in the OSM way. This
also retains the original OSM way’s oneway tag’s string value as edge attribute values, rather than converting
them to True/False bool values. Default is False.

bidirectional_network_types
[list[str]] Network types for which a fully bidirectional graph will be created. Default is [“walk”].

96 Chapter 6. Documentation

OSMnx, Release 2.0.0-dev

cache_folder
[str | Path] Path to folder to save/load HTTP response cache files, if the use_cache setting is True. Default is
“./cache”.

cache_only_mode
[bool] If True, download network data from Overpass then raise a CacheOnlyModeInterrupt error for user to
catch. This prevents graph building from taking place and instead just saves Overpass response to cache. Useful
for sequentially caching lots of raw data (as you can only query Overpass one request at a time) then using the
local cache to quickly build many graphs simultaneously with multiprocessing. Default is False.

data_folder
[str | Path] Path to folder to save/load graph files by default. Default is “./data”.

default_access
[str] Filter for the OSM “access” tag. Default is ‘[“access”!~”private”]’. Note that also filtering out “ac-
cess=no” ways prevents including transit-only bridges (e.g., Tilikum Crossing) from appearing in drivable road
network (e.g., ‘[“access”!~”private|no”]’). However, some drivable tollroads have “access=no” plus a “ac-
cess:conditional” tag to clarify when it is accessible, so we can’t filter out all “access=no” ways by default.
Best to be permissive here then remove complicated combinations of tags programatically after the full graph is
downloaded and constructed.

default_crs
[str] Default coordinate reference system to set when creating graphs. Default is “epsg:4326”.

doh_url_template
[str | None] Endpoint to resolve DNS-over-HTTPS if local DNS resolution fails. Set to None to disable DoH, but
see downloader._config_dns documentation for caveats. Default is: “https://8.8.8.8/resolve?name={hostname}”

elevation_url_template
[str] Endpoint of the Google Maps Elevation API (or equivalent), containing exactly two parameters: locations
and key. Default is: “https://maps.googleapis.com/maps/api/elevation/json?locations={locations}&key={key}”
One example of an alternative equivalent would be Open Topo Data:
“https://api.opentopodata.org/v1/aster30m?locations={locations}&key={key}”

http_accept_language
[str] HTTP header accept-language. Default is “en”. Note that Nominatim’s default language is “en” and it may
sort its results’ importance scores differently if a different language is specified.

http_referer
[str] HTTP header referer. Default is “OSMnx Python package (https://github.com/gboeing/osmnx)”.

http_user_agent
[str] HTTP header user-agent. Default is “OSMnx Python package (https://github.com/gboeing/osmnx)”.

imgs_folder
[str | Path] Path to folder in which to save plotted images by default. Default is “./images”.

log_file
[bool] If True, save log output to a file in logs_folder. Default is False.

log_filename
[str] Name of the log file, without file extension. Default is “osmnx”.

log_console
[bool] If True, print log output to the console (terminal window). Default is False.

log_level
[int] One of Python’s logger.level constants. Default is logging.INFO.

log_name
[str] Name of the logger. Default is “OSMnx”.

6.4. Internals Reference 97

OSMnx, Release 2.0.0-dev

logs_folder
[str | Path] Path to folder in which to save log files. Default is “./logs”.

max_query_area_size
[float] Maximum area for any part of the geometry in meters: any polygon bigger than this will get divided up
for multiple queries to the API. Default is 2500000000.

nominatim_key
[str | None] Your Nominatim API key, if you are using an API instance that requires one. Default is None.

nominatim_url
[str] The base API url to use for Nominatim queries. Default is “https://nominatim.openstreetmap.org/”.

overpass_memory
[int | None] Overpass server memory allocation size for the query, in bytes. If None, server will choose its default
allocation size. Use with caution. Default is None.

overpass_rate_limit
[bool] If True, check the Overpass server status endpoint for how long to pause before making request. Necessary
if server uses slot management, but can be set to False if you are running your own Overpass instance without
rate limiting. Default is True.

overpass_settings
[str] Settings string for Overpass queries. Default is “[out:json][timeout:{timeout}]{maxsize}”. By default, the
{timeout} and {maxsize} values are set dynamically by OSMnx when used. To query, for example, historical
OSM data as of a certain date: ‘[out:json][timeout:90][date:”2019-10-28T19:20:00Z”]’. Use with caution.

overpass_url
[str] The base API url to use for Overpass queries. Default is “https://overpass-api.de/api”.

requests_kwargs
[dict[str, Any]] Optional keyword args to pass to the requests package when connecting to APIs, for example
to configure authentication or provide a path to a local certificate file. More info on options such as auth, cert,
verify, and proxies can be found in the requests package advanced docs. Default is {}.

requests_timeout
[int] The timeout interval in seconds for HTTP requests, and (when applicable) for Overpass server to use for
executing the query. Default is 180.

use_cache
[bool] If True, cache HTTP responses locally in cache_folder instead of calling API repeatedly for the same
request. Default is True.

useful_tags_node
[list[str]] OSM “node” tags to add as graph node attributes, when present in the data retrieved from OSM. Default
is [“highway”, “junction”, “railway”, “ref”].

useful_tags_way
[list[str]] OSM “way” tags to add as graph edge attributes, when present in the data retrieved from OSM. Default is
[“access”, “area”, “bridge”, “est_width”, “highway”, “junction”, “landuse”, “lanes”, “maxspeed”, “name”,
“oneway”, “ref”, “service”, “tunnel”, “width”].

98 Chapter 6. Documentation

OSMnx, Release 2.0.0-dev

6.4.18 osmnx.simplification module

Simplify, correct, and consolidate spatial graph nodes and edges.

osmnx.simplification._build_path(G, endpoint, endpoint_successor, endpoints)
Build a path of nodes from one endpoint node to next endpoint node.

Parameters

• G (MultiDiGraph) – Input graph.

• endpoint (int) – Ehe endpoint node from which to start the path.

• endpoint_successor (int) – The successor of endpoint through which the path to the
next endpoint will be built.

• endpoints (set[int]) – The set of all nodes in the graph that are endpoints.

Returns
path – The first and last items in the resulting path list are endpoint nodes, and all other items are
interstitial nodes that can be removed subsequently.

Return type
list[int]

osmnx.simplification._consolidate_intersections_rebuild_graph(G, tolerance, reconnect_edges,
node_attr_aggs)

Consolidate intersections comprising clusters of nearby nodes.

Merge nodes and return a rebuilt graph with consolidated intersections and reconnected edge geometries.

Parameters

• G (MultiDiGraph) – A projected graph.

• tolerance (float | dict[int, float]) – Nodes are buffered to this distance (in graph’s
geometry’s units) and subsequent overlaps are dissolved into a single node. If scalar, then
that single value will be used for all nodes. If dict (mapping node IDs to individual values),
then those values will be used per node and any missing node IDs will not be buffered.

• reconnect_edges (bool) – If True, reconnect edges (and their geometries) to the consol-
idated nodes in rebuilt graph, and update the edge length attributes. If False, the returned
graph has no edges (which is faster if you just need topologically consolidated intersection
counts).

• node_attr_aggs (dict[str, Any] | None) – Allows user to aggregate node attributes values
when merging nodes. Keys are node attribute names and values are aggregation functions
(anything accepted as an argument by pandas.agg). Node attributes not in node_attr_aggs
will contain the unique values across the merged nodes. If None, defaults to {“elevation”:
numpy.mean}.

Returns
Gc – A rebuilt graph with consolidated intersections and (optionally) reconnected edge geome-
tries.

Return type
networkx.MultiDiGraph

osmnx.simplification._get_paths_to_simplify(G, node_attrs_include, edge_attrs_differ)
Generate all the paths to be simplified between endpoint nodes.

The path is ordered from the first endpoint, through the interstitial nodes, to the second endpoint.

6.4. Internals Reference 99

OSMnx, Release 2.0.0-dev

Parameters

• G (MultiDiGraph) – Input graph.

• node_attrs_include (Iterable[str] | None) – Node attribute names for relaxing the
strictness of endpoint determination. A node is always an endpoint if it possesses one or
more of the attributes in node_attrs_include.

• edge_attrs_differ (Iterable[str] | None) – Edge attribute names for relaxing the
strictness of endpoint determination. A node is always an endpoint if its incident edges
have different values than each other for any attribute in edge_attrs_differ.

Yields
path_to_simplify

Return type
Iterator[list[int]]

osmnx.simplification._is_endpoint(G, node, node_attrs_include, edge_attrs_differ)
Determine if a node is a true endpoint of an edge.

Return True if the node is a “true” endpoint of an edge in the network, otherwise False. OpenStreetMap data
includes many nodes that exist only as geometric vertices to allow ways to curve. node is a true edge endpoint if
it satisfies at least 1 of the following 5 rules:

1) It is its own neighbor (ie, it self-loops).

2) Or, it has no incoming edges or no outgoing edges (ie, all its incident edges are inbound or all its incident
edges are outbound).

3) Or, it does not have exactly two neighbors and degree of 2 or 4.

4) Or, if node_attrs_include is not None and it has one or more of the attributes in node_attrs_include.

5) Or, if edge_attrs_differ is not None and its incident edges have different values than each other for any of the
edge attributes in edge_attrs_differ.

Parameters

• G (MultiDiGraph) – Input graph.

• node (int) – The ID of the node.

• node_attrs_include (Iterable[str] | None) – Node attribute names for relaxing the
strictness of endpoint determination. A node is always an endpoint if it possesses one or
more of the attributes in node_attrs_include.

• edge_attrs_differ (Iterable[str] | None) – Edge attribute names for relaxing the
strictness of endpoint determination. A node is always an endpoint if its incident edges
have different values than each other for any attribute in edge_attrs_differ.

Returns
bool – endpoint

Return type
bool

osmnx.simplification._merge_nodes_geometric(G, tolerance)
Geometrically merge nodes within some distance of each other.

Parameters

• G (MultiDiGraph) – A projected graph.

100 Chapter 6. Documentation

OSMnx, Release 2.0.0-dev

• tolerance (float | dict[int, float]) – Nodes are buffered to this distance (in graph’s
geometry’s units) and subsequent overlaps are dissolved into a single node. If scalar, then
that single value will be used for all nodes. If dict (mapping node IDs to individual values),
then those values will be used per node and any missing node IDs will not be buffered.

Returns
merged – The merged overlapping polygons of the buffered nodes.

Return type
geopandas.GeoSeries

osmnx.simplification._remove_rings(G, node_attrs_include, edge_attrs_differ)
Remove all graph components that consist only of a single chordless cycle.

This identifies all connected components in the graph that consist only of a single isolated self-contained ring,
and removes them from the graph.

Parameters

• G (MultiDiGraph) – Input graph.

• node_attrs_include (Iterable[str] | None) – Node attribute names for relaxing the
strictness of endpoint determination. A node is always an endpoint if it possesses one or
more of the attributes in node_attrs_include.

• edge_attrs_differ (Iterable[str] | None) – Edge attribute names for relaxing the
strictness of endpoint determination. A node is always an endpoint if its incident edges
have different values than each other for any attribute in edge_attrs_differ.

Returns
G – Graph with all chordless cycle components removed.

Return type
networkx.MultiDiGraph

osmnx.simplification.consolidate_intersections(G, *, tolerance=10, rebuild_graph=True,
dead_ends=False, reconnect_edges=True,
node_attr_aggs=None)

Consolidate intersections comprising clusters of nearby nodes.

Merges nearby nodes and returns either their centroids or a rebuilt graph with consolidated intersections and
reconnected edge geometries. The tolerance argument can be a single value applied to all nodes or individual per-
node values. It should be adjusted to approximately match street design standards in the specific street network,
and you should use a projected graph to work in meaningful and consistent units like meters. Note: tolerance
represents a per-node buffering radius. For example, to consolidate nodes within 10 meters of each other, use
tolerance=5.

When rebuild_graph is False, it uses a purely geometric (and relatively fast) algorithm to identify “geometrically
close” nodes, merge them, and return the merged intersections’ centroids. When rebuild_graph is True, it uses
a topological (and slower but more accurate) algorithm to identify “topologically close” nodes, merge them,
then rebuild/return the graph. Returned graph’s node IDs represent clusters rather than “osmid” values. Refer
to nodes’ “osmid_original” attributes for original “osmid” values. If multiple nodes were merged together, the
“osmid_original” attribute is a list of merged nodes’ “osmid” values.

Divided roads are often represented by separate centerline edges. The intersection of two divided roads thus
creates 4 nodes, representing where each edge intersects a perpendicular edge. These 4 nodes represent a single
intersection in the real world. A similar situation occurs with roundabouts and traffic circles. This function
consolidates nearby nodes by buffering them to an arbitrary distance, merging overlapping buffers, and taking
their centroid.

Parameters

6.4. Internals Reference 101

OSMnx, Release 2.0.0-dev

• G (nx.MultiDiGraph) – A projected graph.

• tolerance (float | dict[int, float]) – Nodes are buffered to this distance (in graph’s geom-
etry’s units) and subsequent overlaps are dissolved into a single node. If scalar, then that
single value will be used for all nodes. If dict (mapping node IDs to individual values), then
those values will be used per node and any missing node IDs will not be buffered.

• rebuild_graph (bool) – If True, consolidate the nodes topologically, rebuild the graph,
and return as MultiDiGraph. Otherwise, consolidate the nodes geometrically and return the
consolidated node points as GeoSeries.

• dead_ends (bool) – If False, discard dead-end nodes to return only street-intersection points.

• reconnect_edges (bool) – If True, reconnect edges (and their geometries) to the consol-
idated nodes in rebuilt graph, and update the edge length attributes. If False, the returned
graph has no edges (which is faster if you just need topologically consolidated intersection
counts). Ignored if rebuild_graph is not True.

• node_attr_aggs (dict[str, Any] | None) – Allows user to aggregate node attributes values
when merging nodes. Keys are node attribute names and values are aggregation functions
(anything accepted as an argument by pandas.agg). Node attributes not in node_attr_aggs
will contain the unique values across the merged nodes. If None, defaults to {“elevation”:
numpy.mean}.

Returns
G or gs – If rebuild_graph=True, returns MultiDiGraph with consolidated intersections and (op-
tionally) reconnected edge geometries. If rebuild_graph=False, returns GeoSeries of Points rep-
resenting the centroids of street intersections.

Return type
nx.MultiDiGraph | gpd.GeoSeries

osmnx.simplification.simplify_graph(G, *, node_attrs_include=None, edge_attrs_differ=None,
remove_rings=True, track_merged=False, edge_attr_aggs=None)

Simplify a graph’s topology by removing interstitial nodes.

This simplifies the graph’s topology by removing all nodes that are not intersections or dead-ends, by creating
an edge directly between the end points that encapsulate them while retaining the full geometry of the original
edges, saved as a new geometry attribute on the new edge.

Note that only simplified edges receive a geometry attribute. Some of the resulting consolidated edges may
comprise multiple OSM ways, and if so, their unique attribute values are stored as a list. Optionally, the simplified
edges can receive a merged_edges attribute that contains a list of all the (u, v) node pairs that were merged together.

Use the node_attrs_include or edge_attrs_differ parameters to relax simplification strictness. For example,
edge_attrs_differ=[“osmid”] will retain every node whose incident edges have different OSM IDs. This lets
you keep nodes at elbow two-way intersections (but be aware that sometimes individual blocks have multiple
OSM IDs within them too). You could also use this parameter to retain nodes where sidewalks or bike lanes
begin/end in the middle of a block. Or for example, node_attrs_include=[“highway”] will retain every node
with a “highway” attribute (regardless of its value), even if it does not represent a street junction.

Parameters

• G (MultiDiGraph) – Input graph.

• node_attrs_include (Iterable[str] | None) – Node attribute names for relaxing the
strictness of endpoint determination. A node is always an endpoint if it possesses one or
more of the attributes in node_attrs_include.

102 Chapter 6. Documentation

OSMnx, Release 2.0.0-dev

• edge_attrs_differ (Iterable[str] | None) – Edge attribute names for relaxing the
strictness of endpoint determination. A node is always an endpoint if its incident edges
have different values than each other for any attribute in edge_attrs_differ.

• remove_rings (bool) – If True, remove any graph components that consist only of a single
chordless cycle (i.e., an isolated self-contained ring).

• track_merged (bool) – If True, add merged_edges attribute on simplified edges, containing
a list of all the (u, v) node pairs that were merged together.

• edge_attr_aggs (dict[str, Any] | None) – Allows user to aggregate edge segment at-
tributes when simplifying an edge. Keys are edge attribute names and values are aggrega-
tion functions to apply to these attributes when they exist for a set of edges being merged.
Edge attributes not in edge_attr_aggs will contain the unique values across the merged edge
segments. If None, defaults to {“length”: sum, “travel_time”: sum}.

Returns
G – Topologically simplified graph, with a new geometry attribute on each simplified edge.

Return type
networkx.MultiDiGraph

6.4.19 osmnx.stats module

Calculate geometric and topological network measures.

This module defines streets as the edges in an undirected representation of the graph. Using undirected graph edges
prevents double-counting bidirectional edges of a two-way street, but may double-count a divided road’s separate
centerlines with different end point nodes. Due to OSMnx’s periphery cleaning when the graph was created, you will
get accurate node degrees (and in turn streets-per-node counts) even at the periphery of the graph.

You can use NetworkX directly for additional topological network measures.

osmnx.stats.basic_stats(G, *, area=None, clean_int_tol=None)
Calculate basic descriptive geometric and topological measures of a graph.

Density measures are only calculated if area is provided and clean intersection measures are only calculated if
clean_int_tol is provided.

Parameters

• G (MultiDiGraph) – Input graph.

• area (float | None) – If not None, calculate density measures and use area (in square
meters) as the denominator.

• clean_int_tol (float | None) – If not None, calculate consolidated intersections count
(and density, if area is also provided) and use this tolerance value. Refer to the simplifica-
tion.consolidate_intersections function documentation for details.

Returns

dict[str, Any] – stats –

Dictionary containing the following keys:

• circuity_avg - see circuity_avg function documentation

• clean_intersection_count - see clean_intersection_count function documentation

• clean_intersection_density_km - clean_intersection_count per sq km

• edge_density_km - edge_length_total per sq km

6.4. Internals Reference 103

OSMnx, Release 2.0.0-dev

• edge_length_avg - edge_length_total / m

• edge_length_total - see edge_length_total function documentation

• intersection_count - see intersection_count function documentation

• intersection_density_km - intersection_count per sq km

• k_avg - graph’s average node degree (in-degree and out-degree)

• m - count of edges in graph

• n - count of nodes in graph

• node_density_km - n per sq km

• self_loop_proportion - see self_loop_proportion function documentation

• street_density_km - street_length_total per sq km

• street_length_avg - street_length_total / street_segment_count

• street_length_total - see street_length_total function documentation

• street_segment_count - see street_segment_count function documentation

• streets_per_node_avg - see streets_per_node_avg function documentation

• streets_per_node_counts - see streets_per_node_counts function documentation

• streets_per_node_proportions - see streets_per_node_proportions function documenta-
tion

Return type
dict[str, Any]

osmnx.stats.circuity_avg(Gu)
Calculate average street circuity using edges of undirected graph.

Circuity is the sum of edge lengths divided by the sum of straight-line distances between edge endpoints. Cal-
culates straight-line distance as euclidean distance if projected or great-circle distance if unprojected. Returns
None if the edge lengths sum to zero.

Parameters
Gu (MultiGraph) – Undirected input graph.

Returns
circuity_avg – The graph’s average undirected edge circuity.

Return type
float | None

osmnx.stats.count_streets_per_node(G, *, nodes=None)
Count how many physical street segments connect to each node in a graph.

This function uses an undirected representation of the graph and special handling of self-loops to accurately count
physical streets rather than directed edges. Note: this function is automatically run by all the graph.graph_from_x
functions prior to truncating the graph to the requested boundaries, to add accurate street_count attributes to each
node even if some of its neighbors are outside the requested graph boundaries.

Parameters

• G (MultiDiGraph) – Input graph.

• nodes (Iterable[int] | None) – Which node IDs to get counts for. If None, use all graph
nodes. Otherwise calculate counts only for these node IDs.

104 Chapter 6. Documentation

OSMnx, Release 2.0.0-dev

Returns
streets_per_node – Counts of how many physical streets connect to each node, with keys = node
ids and values = counts.

Return type
dict[int, int]

osmnx.stats.edge_length_total(G)
Calculate graph’s total edge length.

Parameters
G (MultiGraph) – Input graph.

Returns
length – Total length (meters) of edges in graph.

Return type
float

osmnx.stats.intersection_count(G, *, min_streets=2)
Count the intersections in a graph.

Intersections are defined as nodes with at least min_streets number of streets incident on them.

Parameters

• G (MultiDiGraph) – Input graph.

• min_streets (int) – A node must have at least min_streets incident on them to count as
an intersection.

Returns
count – Count of intersections in graph.

Return type
int

osmnx.stats.self_loop_proportion(Gu)
Calculate percent of edges that are self-loops in a graph.

A self-loop is defined as an edge from node u to node v where u==v.

Parameters
Gu (MultiGraph) – Undirected input graph.

Returns
proportion – Proportion of graph edges that are self-loops.

Return type
float

osmnx.stats.street_length_total(Gu)
Calculate graph’s total street segment length.

Parameters
Gu (MultiGraph) – Undirected input graph.

Returns
length – Total length (meters) of streets in graph.

Return type
float

6.4. Internals Reference 105

OSMnx, Release 2.0.0-dev

osmnx.stats.street_segment_count(Gu)
Count the street segments in a graph.

Parameters
Gu (MultiGraph) – Undirected input graph.

Returns
count – Count of street segments in graph.

Return type
int

osmnx.stats.streets_per_node(G)
Retrieve nodes’ street_count attribute values.

See also the count_streets_per_node function for the calculation.

Parameters
G (MultiDiGraph) – Input graph.

Returns
spn – Dictionary with node ID keys and street count values.

Return type
dict[int, int]

osmnx.stats.streets_per_node_avg(G)
Calculate graph’s average count of streets per node.

Parameters
G (MultiDiGraph) – Input graph.

Returns
spna – Average count of streets per node.

Return type
float

osmnx.stats.streets_per_node_counts(G)
Calculate streets-per-node counts.

Parameters
G (MultiDiGraph) – Input graph.

Returns
spnc – Dictionary keyed by count of streets incident on each node, and with values of how many
nodes in the graph have this count.

Return type
dict[int, int]

osmnx.stats.streets_per_node_proportions(G)
Calculate streets-per-node proportions.

Parameters
G (MultiDiGraph) – Input graph.

Returns
spnp – Dictionary keyed by count of streets incident on each node, and with values of what
proportion of nodes in the graph have this count.

Return type
dict[int, float]

106 Chapter 6. Documentation

OSMnx, Release 2.0.0-dev

6.4.20 osmnx.truncate module

Truncate graph by distance, bounding box, or polygon.

osmnx.truncate.largest_component(G, *, strongly=False)
Return G’s largest weakly or strongly connected component as a graph.

Parameters

• G (MultiDiGraph) – Input graph.

• strongly (bool) – If True, return the largest strongly connected component. Otherwise
return the largest weakly connected component.

Returns
G – The largest connected component subgraph of the original graph.

Return type
networkx.MultiDiGraph

osmnx.truncate.truncate_graph_bbox(G, bbox, *, truncate_by_edge=False)
Remove from a graph every node that falls outside a bounding box.

Parameters

• G (MultiDiGraph) – Input graph.

• bbox (tuple[float, float, float, float]) – Bounding box as (north, south, east, west).

• truncate_by_edge (bool) – If True, retain nodes outside bounding box if at least one of
node’s neighbors is within the bounding box.

Returns
G – The truncated graph.

Return type
networkx.MultiDiGraph

osmnx.truncate.truncate_graph_dist(G, source_node, dist, *, weight='length')
Remove from a graph every node beyond some network distance from a node.

This function must calculate shortest path distances between source_node and every other graph node, which
can be slow on large graphs.

Parameters

• G (MultiDiGraph) – Input graph.

• source_node (int) – Node from which to measure network distances to all other nodes.

• dist (float) – Remove every node in the graph that is greater than dist distance (in same
units as weight attribute) along the network from source_node.

• weight (str) – Graph edge attribute to use to measure distance.

Returns
G – The truncated graph.

Return type
networkx.MultiDiGraph

osmnx.truncate.truncate_graph_polygon(G, polygon, *, truncate_by_edge=False)
Remove from a graph every node that falls outside a (Multi)Polygon.

Parameters

6.4. Internals Reference 107

OSMnx, Release 2.0.0-dev

• G (nx.MultiDiGraph) – Input graph.

• polygon (Polygon | MultiPolygon) – Only retain nodes in graph that lie within this geometry.

• truncate_by_edge (bool) – If True, retain nodes outside boundary polygon if at least one
of node’s neighbors is within the polygon.

Returns
G – The truncated graph.

Return type
nx.MultiDiGraph

6.4.21 osmnx.utils module

General utility functions.

osmnx.utils._get_logger(name, filename)
Create a logger or return the current one if already instantiated.

Parameters

• name (str) – Name of the logger.

• filename (str) – Name of the log file, without file extension.

Returns
Logger – logger

Return type
Logger

osmnx.utils.citation(style='bibtex')
Print the OSMnx package’s citation information.

Boeing, G. (2024). Modeling and Analyzing Urban Networks and Amenities with OSMnx. Working paper.
https://geoffboeing.com/publications/osmnx-paper/

Parameters
style (str) – {“apa”, “bibtex”, “ieee”} The citation format, either APA or BibTeX or IEEE.

Returns
None – None

Return type
None

osmnx.utils.log(message, level=None, name=None, filename=None)
Write a message to the logger.

This logs to file and/or prints to the console (terminal), depending on the current configuration of settings.log_file
and settings.log_console.

Parameters

• message (str) – The message to log.

• level (int | None) – One of the Python logger.level constants. If None, set to set-
tings.log_level value.

• name (str | None) – The name of the logger. If None, set to settings.log_name value.

108 Chapter 6. Documentation

https://geoffboeing.com/publications/osmnx-paper/

OSMnx, Release 2.0.0-dev

• filename (str | None) – The name of the log file, without file extension. If None, set to
settings.log_filename value.

Returns
None – None

Return type
None

osmnx.utils.ts(style='datetime', template=None)
Return current local timestamp as a string.

Parameters

• style (str) – {“datetime”, “iso8601”, “date”, “time”} Format the timestamp with this built-
in style.

• template (str | None) – If not None, format the timestamp with this format string instead
of one of the built-in styles.

Returns
str – timestamp

Return type
str

6.4.22 osmnx.utils_geo module

Geospatial utility functions.

osmnx.utils_geo._consolidate_subdivide_geometry(geometry)
Consolidate and subdivide some (projected) geometry.

Consolidate a geometry into a convex hull, then subdivide it into smaller sub-polygons if its area exceeds max
size (in geometry’s units). Configure the max size via the settings module’s max_query_area_size. Geometries
with areas much larger than max_query_area_size may take a long time to process.

When the geometry has a very large area relative to its vertex count, the resulting MultiPolygon’s boundary may
differ somewhat from the input, due to the way long straight lines are projected. You can interpolate additional
vertices along your input geometry’s exterior to mitigate this if necessary.

Parameters
geometry (Polygon | MultiPolygon) – The projected (in meter units) geometry to consolidate
and subdivide.

Returns
MultiPolygon – geometry

Return type
MultiPolygon

osmnx.utils_geo._intersect_index_quadrats(geometries, polygon)
Identify geometries that intersect a (Multi)Polygon.

Uses an r-tree spatial index and cuts polygon up into smaller sub-polygons for r-tree acceleration. Ensure that
geometries and polygon are in the same coordinate reference system.

Parameters

• geometries (gpd.GeoSeries) – The geometries to intersect with the polygon.

• polygon (Polygon | MultiPolygon) – The polygon to intersect with the geometries.

6.4. Internals Reference 109

OSMnx, Release 2.0.0-dev

Returns
geoms_in_poly – The index labels of the geometries that intersected the polygon.

Return type
set[Any]

osmnx.utils_geo._quadrat_cut_geometry(geometry, quadrat_width)
Split a Polygon or MultiPolygon up into sub-polygons of a specified size.

Parameters

• geometry (Polygon | MultiPolygon) – The geometry to split up into smaller sub-polygons.

• quadrat_width (float) – Width (in geometry’s units) of quadrat squares with which to split
up the geometry.

Returns
MultiPolygon – geometry

Return type
MultiPolygon

osmnx.utils_geo.bbox_from_point(point, dist, *, project_utm=False, return_crs=False)
Create a bounding box around a (lat, lon) point.

Create a bounding box some distance (in meters) in each direction (north, south, east, and west) from the center
point and optionally project it.

Parameters

• point (tuple[float, float]) – The (lat, lon) center point to create the bounding box
around.

• dist (float) – Bounding box distance in meters from the center point.

• project_utm (bool) – If True, return bounding box as UTM-projected coordinates.

• return_crs (bool) – If True, and project_utm is True, then return the projected CRS too.

Returns
bbox or bbox, crs – (north, south, east, west) or ((north, south, east, west), crs).

Return type
tuple[float, float, float, float] | tuple[tuple[float, float, float, float], Any]

osmnx.utils_geo.bbox_to_poly(bbox)
Convert bounding box coordinates to Shapely Polygon.

Parameters
bbox (tuple[float, float, float, float]) – Bounding box as (north, south, east, west).

Returns
Polygon – polygon

Return type
shapely.Polygon

osmnx.utils_geo.interpolate_points(geom, dist)
Interpolate evenly spaced points along a LineString.

The spacing is approximate because the LineString’s length may not be evenly divisible by it.

Parameters

• geom (LineString) – A LineString geometry.

110 Chapter 6. Documentation

OSMnx, Release 2.0.0-dev

• dist (float) – Spacing distance between interpolated points, in same units as geom.
Smaller values accordingly generate more points.

Yields
point – Interpolated point’s (x, y) coordinates.

Return type
Iterator[tuple[float, float]]

osmnx.utils_geo.sample_points(G, n)
Randomly sample points constrained to a spatial graph.

This generates a graph-constrained uniform random sample of points. Unlike typical spatially uniform random
sampling, this method accounts for the graph’s geometry. And unlike equal-length edge segmenting, this method
guarantees uniform randomness.

Parameters

• G (MultiGraph) – Graph from which to sample points. Should be undirected (to avoid
oversampling bidirectional edges) and projected (for accurate point interpolation).

• n (int) – How many points to sample.

Returns
point – The sampled points, multi-indexed by (u, v, key) of the edge from which each point was
sampled.

Return type
geopandas.GeoSeries

6.4.23 osmnx._version module

OSMnx package version information.

6.5 Further Reading

Boeing, G. (2024). Modeling and Analyzing Urban Networks and Amenities with OSMnx. Working paper. https:
//geoffboeing.com/publications/osmnx-paper/

This is the official citation for the project.

Boeing, G. (2021). Street Network Models and Indicators for Every Urban Area in the World. Geographical Analysis
54 (3), 519-535.

This study uses OSMnx to model and analyze the street networks of every urban area in the world: over 160 million
OpenStreetMap street network nodes and over 320 million edges across 8,914 urban areas in 178 countries.

Boeing, G. (2020). The Right Tools for the Job: The Case for Spatial Science Tool-Building. Transactions in GIS 24
(5), 1299-1314.

This paper was presented as the 8th annual Transactions in GIS plenary address at the American Association of Geog-
raphers annual meeting in Washington, DC. It describes the development of OSMnx and reviews its use in scientific
research over the previous few years.

6.5. Further Reading 111

https://geoffboeing.com/publications/osmnx-paper/
https://geoffboeing.com/publications/osmnx-paper/
https://geoffboeing.com/publications/osmnx-paper/
https://geoffboeing.com/publications/street-network-models-indicators-world/
https://geoffboeing.com/publications/right-tools-for-job/

OSMnx, Release 2.0.0-dev

Boeing, G. (2020). Planarity and Street Network Representation in Urban Form Analysis. Environment and Planning
B: Urban Analytics and City Science 47 (5), 855-869.

This paper discusses the importance of using nonplanar graphs when modeling urban street networks, which was one
of the original motivations for developing OSMnx.

112 Chapter 6. Documentation

https://geoffboeing.com/publications/planarity-street-network-representation/

CHAPTER

SEVEN

INDICES

• genindex

• modindex

• search

113

OSMnx, Release 2.0.0-dev

114 Chapter 7. Indices

PYTHON MODULE INDEX

o
osmnx.bearing, 17
osmnx.convert, 18
osmnx.distance, 20
osmnx.elevation, 22
osmnx.features, 23
osmnx.geocoder, 26
osmnx.graph, 27
osmnx.io, 32
osmnx.plot, 34
osmnx.projection, 39
osmnx.routing, 40
osmnx.settings, 42
osmnx.simplification, 44
osmnx.stats, 46
osmnx.truncate, 50
osmnx.utils, 51
osmnx.utils_geo, 52

115

OSMnx, Release 2.0.0-dev

116 Python Module Index

INDEX

A
add_edge_bearings() (in module osmnx.bearing), 17
add_edge_grades() (in module osmnx.elevation), 22
add_edge_lengths() (in module osmnx.distance), 20
add_edge_speeds() (in module osmnx.routing), 40
add_edge_travel_times() (in module osmnx.routing),

41
add_node_elevations_google() (in module

osmnx.elevation), 22
add_node_elevations_raster() (in module

osmnx.elevation), 23

B
basic_stats() (in module osmnx.stats), 46
bbox_from_point() (in module osmnx.utils_geo), 52
bbox_to_poly() (in module osmnx.utils_geo), 52

C
calculate_bearing() (in module osmnx.bearing), 17
circuity_avg() (in module osmnx.stats), 47
citation() (in module osmnx.utils), 51
consolidate_intersections() (in module

osmnx.simplification), 44
count_streets_per_node() (in module osmnx.stats),

47

E
edge_length_total() (in module osmnx.stats), 48
euclidean() (in module osmnx.distance), 20

F
features_from_address() (in module

osmnx.features), 23
features_from_bbox() (in module osmnx.features), 24
features_from_place() (in module osmnx.features),

24
features_from_point() (in module osmnx.features),

25
features_from_polygon() (in module

osmnx.features), 25
features_from_xml() (in module osmnx.features), 26

G
geocode() (in module osmnx.geocoder), 26
geocode_to_gdf() (in module osmnx.geocoder), 26
get_colors() (in module osmnx.plot), 34
get_edge_colors_by_attr() (in module osmnx.plot),

34
get_node_colors_by_attr() (in module osmnx.plot),

35
graph_from_address() (in module osmnx.graph), 27
graph_from_bbox() (in module osmnx.graph), 28
graph_from_gdfs() (in module osmnx.convert), 18
graph_from_place() (in module osmnx.graph), 29
graph_from_point() (in module osmnx.graph), 30
graph_from_polygon() (in module osmnx.graph), 31
graph_from_xml() (in module osmnx.graph), 31
graph_to_gdfs() (in module osmnx.convert), 19
great_circle() (in module osmnx.distance), 20

I
interpolate_points() (in module osmnx.utils_geo),

52
intersection_count() (in module osmnx.stats), 48
is_projected() (in module osmnx.projection), 39

K
k_shortest_paths() (in module osmnx.routing), 41

L
largest_component() (in module osmnx.truncate), 50
load_graphml() (in module osmnx.io), 32
log() (in module osmnx.utils), 51

M
module
osmnx.bearing, 17
osmnx.convert, 18
osmnx.distance, 20
osmnx.elevation, 22
osmnx.features, 23
osmnx.geocoder, 26
osmnx.graph, 27

117

OSMnx, Release 2.0.0-dev

osmnx.io, 32
osmnx.plot, 34
osmnx.projection, 39
osmnx.routing, 40
osmnx.settings, 42
osmnx.simplification, 44
osmnx.stats, 46
osmnx.truncate, 50
osmnx.utils, 51
osmnx.utils_geo, 52

N
nearest_edges() (in module osmnx.distance), 21
nearest_nodes() (in module osmnx.distance), 21

O
orientation_entropy() (in module osmnx.bearing),

18
osmnx.bearing
module, 17

osmnx.convert
module, 18

osmnx.distance
module, 20

osmnx.elevation
module, 22

osmnx.features
module, 23

osmnx.geocoder
module, 26

osmnx.graph
module, 27

osmnx.io
module, 32

osmnx.plot
module, 34

osmnx.projection
module, 39

osmnx.routing
module, 40

osmnx.settings
module, 42

osmnx.simplification
module, 44

osmnx.stats
module, 46

osmnx.truncate
module, 50

osmnx.utils
module, 51

osmnx.utils_geo
module, 52

P
plot_figure_ground() (in module osmnx.plot), 35
plot_footprints() (in module osmnx.plot), 35
plot_graph() (in module osmnx.plot), 36
plot_graph_route() (in module osmnx.plot), 37
plot_graph_routes() (in module osmnx.plot), 37
plot_orientation() (in module osmnx.plot), 38
project_gdf() (in module osmnx.projection), 39
project_geometry() (in module osmnx.projection), 39
project_graph() (in module osmnx.projection), 39

R
route_to_gdf() (in module osmnx.routing), 41

S
sample_points() (in module osmnx.utils_geo), 53
save_graph_geopackage() (in module osmnx.io), 32
save_graph_xml() (in module osmnx.io), 33
save_graphml() (in module osmnx.io), 33
self_loop_proportion() (in module osmnx.stats), 48
shortest_path() (in module osmnx.routing), 41
simplify_graph() (in module osmnx.simplification), 45
street_length_total() (in module osmnx.stats), 48
street_segment_count() (in module osmnx.stats), 48
streets_per_node() (in module osmnx.stats), 49
streets_per_node_avg() (in module osmnx.stats), 49
streets_per_node_counts() (in module osmnx.stats),

49
streets_per_node_proportions() (in module

osmnx.stats), 49

T
to_digraph() (in module osmnx.convert), 19
to_undirected() (in module osmnx.convert), 19
truncate_graph_bbox() (in module osmnx.truncate),

50
truncate_graph_dist() (in module osmnx.truncate),

50
truncate_graph_polygon() (in module

osmnx.truncate), 50
ts() (in module osmnx.utils), 51

118 Index

	Citation
	Getting Started
	Installation
	Support
	License
	Documentation
	Getting Started
	Get Started in 4 Steps
	Introducing OSMnx
	Overview
	Configuration
	Geocoding and Querying
	Urban Amenities
	Modeling a Network
	Topology Clean-Up
	Converting, Projecting, Saving
	Working with Elevation
	Network Measures
	Routing
	Visualization

	More Info
	Frequently Asked Questions

	Installation
	Conda
	Docker
	Pip

	User Reference
	osmnx.bearing module
	osmnx.convert module
	osmnx.distance module
	osmnx.elevation module
	osmnx.features module
	osmnx.geocoder module
	osmnx.graph module
	osmnx.io module
	osmnx.plot module
	osmnx.projection module
	osmnx.routing module
	osmnx.settings module
	osmnx.simplification module
	osmnx.stats module
	osmnx.truncate module
	osmnx.utils module
	osmnx.utils_geo module

	Internals Reference
	osmnx.bearing module
	osmnx.convert module
	osmnx.distance module
	osmnx.elevation module
	osmnx._errors module
	osmnx.features module
	osmnx.geocoder module
	osmnx.graph module
	osmnx._http module
	osmnx.io module
	osmnx._nominatim module
	osmnx._osm_xml module
	osmnx._overpass module
	osmnx.plot module
	osmnx.projection module
	osmnx.routing module
	osmnx.settings module
	osmnx.simplification module
	osmnx.stats module
	osmnx.truncate module
	osmnx.utils module
	osmnx.utils_geo module
	osmnx._version module

	Further Reading

	Indices
	Python Module Index
	Index

